Product Data Sheet

PHCCC

Cat. No.: HY-100409 CAS No.: 179068-02-1 Molecular Formula: $C_{17}H_{14}N_{2}O_{3}$ Molecular Weight: 294.3

Target: mGluR

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder -20°C 3 years

2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 12.5 mg/mL (42.47 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3979 mL	16.9895 mL	33.9789 mL
	5 mM	0.6796 mL	3.3979 mL	6.7958 mL
	10 mM	0.3398 mL	1.6989 mL	3.3979 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (4.25 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 1.25 mg/mL (4.25 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.25 mg/mL (4.25 mM); Clear solution

BIOLOGICAL ACTIVITY

Description PHCCC is a Group I mGluR antagonist with an IC $_{50}$ of 3 μ M. PHCCC is a selective positive modulator of mGlu4 receptor. Antiparkinsonian effect^{[1][2]}.

Group I mGluR receptors IC₅₀ & Target

 $3 \mu M (IC_{50})$

In Vitro PHCCC potentiated the effect of L-(+)-2-amino-4-phosphonobutyric acid (L-AP4) in inhibiting transmission at the

	striatopallidal synapse $^{[2]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	PHCCC (75 nmol/2.5 μ l; intracerebroventricular) produces an antiparkinsonian effect in a dopamine depletion akinesia model ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Marino MJ et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13668-73.
- [2]. Récasens M, et al. Metabotropic glutamate receptors as drug targets. Curr Drug Targets. 2007;8(5):651-681.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com