MedChemExpress

ADHP

Cat. No.:	$\mathrm{HY}-101880$
CAS No.:	$119171-73-2$
Molecular Formula:	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{4}$
Molecular Weight:	257.24
Target:	Fluorescent Dye
Pathway:	Others
Storage:	$4^{\circ} \mathrm{C}$, protect from light
	${ }^{\circ}$ In solvent : $-80^{\circ} \mathrm{C}, 6$ months; $-20^{\circ} \mathrm{C}, 1$ month (protect from light)

SOLVENT \& SOLUBILITY

In Vitro

DMSO : $125 \mathrm{mg} / \mathrm{mL}$ (485.93 mM; Need ultrasonic)

	Solvent Mass			
Concentration	1 mg	5 mg	10 mg	
Preparing				
Stock Solutions	1 mM	3.8874 mL	19.4371 mL	38.8742 mL
	5 mM	0.7775 mL	3.8874 mL	7.7748 mL
	10 mM	0.3887 mL	1.9437 mL	3.8874 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description
ADHP is a fluorogenic peroxidase substrate $\left(\lambda_{\mathrm{ex}}=530 \mathrm{~nm}, \lambda_{\mathrm{em}}=590 \mathrm{~nm}\right)$.

In Vitro

To obtain the parameters K_{m} and $\mathrm{k}_{\text {cat }}$ for Compound I , two independent methods are used. Initially, the oxidation of ADHP using the injector functionality built-in to the fluorescence plate reader is studied. The auto-injector dispenses the $\mathrm{H}_{2} \mathrm{O}_{2}$ to initiate the reaction, as a means of generating a set of progress curves. Analysis for MPO-mediated oxidation of ADHP gives a K_{m} of $31 \pm 4 \mu \mathrm{M}$ and the $\mathrm{k}_{\mathrm{cat}}$ of $186 \pm 6 \mathrm{~s}^{1}$. The $\mathrm{k}_{\mathrm{obs}}$ also increases over the experimental range of ADHP concentrations from 1 to $80 \mu \mathrm{M}$ and for the converse experiment holding substrate constant over 3 to 45 nM MPO. The apparent second order rate constant obtain from the slope of $\mathrm{k}_{\text {obs }}$ against ADHP concentration $K^{\text {app }}$ on is $2.1 \pm 0.2 \mathrm{mM} / \mathrm{s}^{[1]}$.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay ${ }^{[1]}$

ADHP, 4-ABAH, 2-ABAH, 4-BAH, 4-FBAH, 4-NBAH, 4-TFMBAH, 3-DMABAH, NaN3 and isoniazid are dissolved in DMSO and subsequently diluted into assay buffer. The final concentration of DMSO in the reaction is less than $0.5 \%(v / v)$, which does not affect fluorescence of the oxidized ADHP product 7-hydroxyl-3H-phenoxazin-3-one (resorufin). Reactions of ADHP (20μ
M) are incubated with MPO $(2.8 \mathrm{~nm})$ in assay buffer and initiated by the addition of $1 / 10$ th volume $\mathrm{H}_{2} \mathrm{O}_{2}$ from a serial dilution basin. To determine the effect that the simplest benzoic acid hydrazide inhibitor or its analog 4-TFMBAH has on the heme catalytic ability of MPO, MPO $(1.2 \mu \mathrm{M})$ is incubated for 10 min with different concentrations of BAH inhibitor $(0,0.025,0.25$, 2.5, 12.5 and 25 mM$)$ with ADHP $(40 \mu \mathrm{M})$ and timing of the reaction is measured following addition of $\mathrm{H}_{2} \mathrm{O}_{2}(20 \mu \mathrm{M})$ ADHP. All reactions are measured in assay buffer at room temperature. Samples of $20 \mu \mathrm{~L}$ are added to non-reducing sample loading buffers, and then loaded without prior heating and resolved by 4-15\% gradient SDS-polyacrylamide gel electrophoresis ${ }^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Jiansheng Huang, et al. Ordered Cleavage of Myeloperoxidase Ester Bonds Releases Active site Heme Leading to Inactivation of Myeloperoxidase by Benzoic Acid Hydrazide Analogs. Arch Biochem Biophys. 2014 Apr 15; 548: 74-85.

Caution: Product has not been fully validated for medical applications. For research use only.

$$
\begin{gathered}
\text { Tel: 609-228-6898 Fax: 609-228-5909 } \\
\text { Address: } 1 \text { Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA }
\end{gathered}
$$

