ADHP

Cat. No.:	HY-101880
CAS No.:	119171-73-2
Molecular Formula:	C ₁₄ H ₁₁ NO ₄
Molecular Weight:	257.24
Target:	Fluorescent Dye
Pathway:	Others
Storage:	4°C, protect from light
	* In solvent : -80°C, 6 months; -20°C, 1 month (protect from light)

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
		1 mM	3.8874 mL	19.4371 mL	38.8742 ml
		5 mM	0.7775 mL	3.8874 mL	7.7748 mL
		10 mM	0.3887 mL	1.9437 mL	3.8874 mL

DescriptionADHP is a fluorogenic peroxidase substrate (λ_{ex} =530 nm, λ_{em} =590 nm).In VitroTo obtain the parameters K _m and k _{cat} for Compound I, two independent methods are used. Initially, the oxidation of ADHP using the injector functionality built-in to the fluorescence plate reader is studied. The auto-injector dispenses the H ₂ O ₂ to initiate the reaction, as a means of generating a set of progress curves. Analysis for MPO-mediated oxidation of ADHP gives a K _m of 31±4 µM and the k _{cat} of 186± 6 s ¹ . The k _{obs} also increases over the experimental range of ADHP concentrations from 1 to 80 µM and for the converse experiment holding substrate constant over 3 to 45 nM MPO. The apparent second order rate constant obtain from the slope of k _{obs} against ADHP concentration K ^{app} on is 2.1±0.2 mM/s ^[1] .	BIOLOGICAL ACTIVITY				
using the injector functionality built-in to the fluorescence plate reader is studied. The auto-injector dispenses the H ₂ O ₂ to initiate the reaction, as a means of generating a set of progress curves. Analysis for MPO-mediated oxidation of ADHP gives a K _m of 31±4 µM and the k _{cat} of 186± 6 s ¹ . The k _{obs} also increases over the experimental range of ADHP concentrations from 1 to 80 µM and for the converse experiment holding substrate constant over 3 to 45 nM MPO. The apparent second order rate	Description	ADHP is a fluorogenic peroxidase substrate (λ_{ex} =530 nm, λ_{em} =590 nm).			
MCE has not independently confirmed the accuracy of these methods. They are for reference only.	In Vitro	using the injector functionality built-in to the fluorescence plate reader is studied. The auto-injector dispenses the H_2O_2 to initiate the reaction, as a means of generating a set of progress curves. Analysis for MPO-mediated oxidation of ADHP gives a K_m of $31\pm4 \mu$ M and the k_{cat} of 186 ± 6 s ¹ . The k_{obs} also increases over the experimental range of ADHP concentrations from 1 to 80 μ M and for the converse experiment holding substrate constant over 3 to 45 nM MPO. The apparent second order rate constant obtain from the slope of k_{obs} against ADHP concentration K^{app}_{on} is $2.1\pm0.2 \text{ mM/s}^{[1]}$.			

PROTOCOL

Kinase Assay ^[1]

ADHP, 4-ABAH, 2-ABAH, 4-BAH, 4-FBAH, 4-NBAH, 4-TFMBAH, 3-DMABAH, NaN₃ and isoniazid are dissolved in DMSO and subsequently diluted into assay buffer. The final concentration of DMSO in the reaction is less than 0.5 % (v/v), which does not affect fluorescence of the oxidized ADHP product 7-hydroxyl-3H-phenoxazin-3-one (resorufin). Reactions of ADHP (20 μ

റ

HC

ΟH

M) are incubated with MPO (2.8 nm) in assay buffer and initiated by the addition of 1/10th volume H_2O_2 from a serial dilution basin. To determine the effect that the simplest benzoic acid hydrazide inhibitor or its analog 4-TFMBAH has on the heme catalytic ability of MPO, MPO (1.2 μ M) is incubated for 10 min with different concentrations of BAH inhibitor (0, 0.025, 0.25, 2.5, 12.5 and 25 mM) with ADHP (40 μ M) and timing of the reaction is measured following addition of H_2O_2 (20 μ M) ADHP. All reactions are measured in assay buffer at room temperature. Samples of 20 μ L are added to non-reducing sample loading buffers, and then loaded without prior heating and resolved by 4-15% gradient SDS-polyacrylamide gel electrophoresis^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Jiansheng Huang, et al. Ordered Cleavage of Myeloperoxidase Ester Bonds Releases Active site Heme Leading to Inactivation of Myeloperoxidase by Benzoic Acid Hydrazide Analogs. Arch Biochem Biophys. 2014 Apr 15; 548: 74–85.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898Fax: 609-228-5909E-mail: tech@MedChemExpress.comAddress: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA