Proteins

Dovitinib lactate

Cat. No.: HY-10207 CAS No.: 692737-80-7 Molecular Formula: $C_{24}H_{27}FN_6O_4$ Molecular Weight: 482.51

Target: FGFR; FLT3; c-Kit; VEGFR; PDGFR Pathway: Protein Tyrosine Kinase/RTK

4°C, sealed storage, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (51.81 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0725 mL	10.3625 mL	20.7250 mL
	5 mM	0.4145 mL	2.0725 mL	4.1450 mL
	10 mM	0.2072 mL	1.0362 mL	2.0725 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description Dovitinib lactate (TKI258 lactate) is a multi-targeted tyrosine kinase inhibitor with IC $_{50}$ s of 1, 2, 8/9, 10/13/8, 27/210 nM for FLT3, c-Kit, FGFR1/3, VEGFR1/2/3 and PDGFR α/β , respectively^[1].

IC ₅₀ & Target	FLT3 1 nM (IC ₅₀)	c-Kit 2 nM (IC ₅₀)	FGFR1 8 nM (IC ₅₀)	FGFR3 9 nM (IC ₅₀)
	VEGFR1 1 nM (IC ₅₀)	VEGFR3 8 nM (IC ₅₀)	VEGFR2 13 nM (IC ₅₀)	PDGFRα 27 nM (IC ₅₀)
	PDGFRβ 210 nM (IC ₅₀)			

In Vitro

Dovitinib potently inhibits the FGF-stimulated growth of WT and F384L-FGFR3-expressing B9 cells with IC₅₀ values of 25 nM. B9-MINV cells are resistant to the inhibitory activity of Dovitinib at concentrations up to 1 μ M. Dovitinib inhibits cell proliferation of KMS11 (FGFR3-Y373C), OPM2 (FGFR3-K650E), and KMS18 (FGFR3-G384D) cells with IC50 of values of 90 nM (KMS11 and OPM2) and 550 nM, respectively [1]. Treatment of SK-HEP1 cells with dovitinib results in G2/M cell cycle arrest, inhibition of colony formation in soft agar and blockade of bFGF-induced cell migration. Dovitinib inhibits basal expression

and FGF-induced phosphorylation of FGFR-1, FRS2- α and ERK1/2^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Dovitinib (10 mg/kg, 30 mg/kg, 60 mg/kg, p.o.) shows significant antitumor effect in the KMS11-bearing mice model, and the growth inhibition is 48%, 78.5%, and 94% in the 10 mg/kg, 30 mg/kg, and 60 mg/kg treatment arms, respectively, compared with the placebo-treated mice^[1]. Dovitinib demonstrates significant antitumor and antimetastatic activities in HCC xenograft models. Dovitinib potently inhibits tumor growth of six HCC lines. Inhibition of angiogenesis correlates with inactivation of FGFR/PDGFR- β /VEGFR-2 signaling pathways. Dovitinib also causes dephosphorylation of retinoblastoma, upregulation of p-histone H2A-X and p27, and downregulation of p-cdk-2 and cyclin B1, which results in a reduction in cellular proliferation and the induction of tumor cell apoptosis^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [2]

To determine IC $_{50}$ for SK-HEP1 cells, cells are plated at a density of 2×10⁴ cells per dish. After 48 h, cells are treated with 0, 0.01, 0.1, 1, 5, 10, 50, 100 μ M dovitinib in DMEM containing 1% FBS for 24 h. Cell viability is determined with Cell Proliferation Assay. IC $_{50}$ is calculated by nonlinear regression analysis using GraphPad Prism software^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [2]

Mice: Six HCC lines (06-0606, 26-0808A, 26-1004, 25-0705A, 5-1318, 21-0208) are used to establish tumors in male SCID mice. or dose-esponse experiments, mice bearing the 06-0606 xenografts re orally given vehicle (5% dextrose) or two doses of dovitinib (50 and 75 mg/kg) daily for 14 days. For time-dependent inhibition of dovitinib targets, mice bearing 06-0606 tumors are given orally 200 μ L of either vehicle (n=6) or 50 mg/kg/day of dovitinib (n=10)^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Sci Transl Med. 2018 Jul 18;10(450):eaaq1093.
- Theranostics. 2018 Jul 30;8(15):4262-4278.
- NPJ Precis Oncol. 2021 Jul 16;5(1):66.
- Front Cell Dev Biol. 2020 May 7;8:287.
- Biochemistry for Health, NOVA University of Lisbon. 2019 Jul.

See more customer validations on www.MedChemExpress.com

REFERENCES

 $[1]. \ Trudel \ S, et \ al. \ CHIR-258, a \ novel, multitargeted \ tyrosine \ kinase \ inhibitor \ for \ the \ potential \ treatment \ of \ t(4;14) \ multiple \ myeloma. \ Blood. \ 2005, 105(7), 2941-2948.$

 $[2]. \ Huynh \ H, et al. \ Dovitinib \ demonstrates \ antitumor \ and \ antimetastatic \ activities \ in \ xenograft \ models \ of \ hepatocellular \ carcinoma. \ J \ Hepatol. \ 2012, 56(3), 595-601.$

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com