Everolimus

Cat. No.:	HY-10218		
CAS No.:	159351-69-6		
Molecular Formula:	C ₅₃ H ₈₃ NO ₁₄		
Molecular Weight:	958.22		
Target:	mTOR; FKBF	; Autoph	agy; Apoptosis; Bacterial
Pathway:	PI3K/Akt/m ⁻	FOR; Apop	otosis; Autophagy; Immunology/Inflammation; Anti-infection
Storage:	Powder	-20°C	3 years
		4°C	2 years
	In solvent	-80°C	1 year
		-20°C	6 months

SOLVENT & SOLUBILITY

In Vitro	DMSO : 50 mg/mL (52 H ₂ O : < 0.1 mg/mL (ul	.18 mM; ultrasonic and warming an trasonic;warming;heat to 60°C) (ins	d heat to 60°C) oluble)		
		Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing 1 mM 1.0436 mL	5.2180 mL	10.4360 mL			
		5 mM	0.2087 mL	1.0436 mL	2.0872 mL
		10 mM	0.1044 mL	0.5218 mL	1.0436 mL
	Please refer to the sol	ubility information to select the ap	propriate solvent.		
In Vivo	1. Add each solvent o Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 40% PE g/mL (2.61 mM); Clear solution	G300 >> 5% Tween-80) >> 45% saline	
	2. Add each solvent o Solubility: 2.5 mg/	one by one: 10% DMSO >> 90% (20 mL (2.61 mM); Suspended solution;	9% SBE-β-CD in saline) ; Need ultrasonic		
	3. Add each solvent o Solubility: ≥ 2.5 m	one by one: 10% DMSO >> 90% co g/mL (2.61 mM); Clear solution	rn oil		
	4. Add each solvent o Solubility: 2.5 mg/	one by one: 5% DMSO >> 40% PEG mL (2.61 mM); Suspended solution;	300 >> 5% Tween-80 Need ultrasonic	>> 50% saline	
	5. Add each solvent o Solubility: 2.5 mg/	one by one: 5% DMSO >> 95% (20% mL (2.61 mM); Suspended solution;	% SBE-β-CD in saline) ; Need ultrasonic		

31	OL	0	GI	CA	L.	A	С٦	T	V	T'	Y

Description

Everolimus (RAD001) is a <u>Rapamycin</u> (HY-10219) derivative and a potent, selective and orally active mTOR1 inhibitor. Everolimus binds to FKBP-12 to generate an immunosuppressive complex. Everolimus inhibits tumor cells proliferation and

Product Data Sheet

но

	induces cell apoptosis and autophagy. Everolimus has potent immunosuppressive and anticancer activities ^{[1][2]} .
IC ₅₀ & Target	mTOR 5-6 nM (IC ₅₀)
In Vitro	Everolimus (RAD001) is an orally active derivative of rapamycin that inhibits the Ser/Thr kinase, mTOR ^[1] . In both the sensitive murine B16/BL6 melanoma (IC ₅₀ , 0.7 nM) and the insensitive human cervical KB-31 (IC ₅₀ , 1,778 nM), antiproliferative concentrations of Everolimus results in total dephosphorylation of S6K1 and the substrate S6 and a shift in the mobility of 4E-BP1, which is indicative of a reduced phosphorylation status ^[3] . Everolimus exhibits a dose-dependent inhibition in both the total cells and the stem cells from the BT474 cell line and the primary breast cancer cells, albeit with different degrees of growth inhibition. Compare with the total cells, Everolimus is less effective in growth inhibition in the stem cells at all tested concentrations (P<0.001). The IC ₅₀ values of Everolimus for BT474 and the primary CSCs are 2,054 and 3,227 nM, or 29 times and 21 times greater than the IC ₅₀ values for their corresponding total cells, respectively ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Everolimus is orally active in both mice and rats, producing an antitumor effect that is characterized by dramatic reduction in tumor growth rates as opposed to producing tumor regressions. In the rat CA20498 model, daily treatment with Everolimus (0.5 or 2.5 mg/kg) dose-dependently inhibits growth, and intermittent dosing using a higher dose of 5 mg/kg (once or twice per week) also shows similar antitumor efficacy. Inhibition by Everolimus is characterized by sustained suppression rather than regression and is not associated with any body weight loss ^[1] . The effect of Everolimus treatment (0.1-10 mg/kg/d) is selective and differ from the effects of PTK/ZK (100 mg/kg). With either growth factor, Everolimus dose- dependently increases the hemoglobin content (convert to blood equivalents and indicative of the number of vessels as well as vascular leakiness) but reduces the Tie-2 content (number of endothelial cells indicative of the number of vessels) and this is significant for VEGF stimulation but not bFGF stimulation. The pharmacokinetics of Everolimus in mice shows that maximum levels of only 0.1 μ M are achieved in a human tumor xenograft following a single administration, whereas plasma levels reach 1 to 3 μ M for ~4 h ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

ροτοςοι	
KOTOCOL	
Cell Assay ^[2]	Tumor cells are plated into 96-well plates at densities ranging from 500 to 5,000/100 µL/well, with repeat experim done at an optimal cell number, typically 1,000 to 2,000 per well, and incubated overnight. Cells are exposed to Ev and incubated for 4 days and the cell number is determined by methylene blue staining. For this, 50 µL glutaralde (v/v)] is added to the wells incubated for 10 min at room temperature. The culture medium is aspirated, cells are with distilled water, and 100 µL methylene blue [0.05% (w/v) in water] is added and incubated for 10 min at 37°C. cells are washed three times with water, 200 µL HCl [3% (v/v)] is added, and the plate shaken at room temperature min. The absorbance of each well is determined at 650 nm. The IC ₅₀ values are calculated using Softmax 2.0 softw MCE has not independently confirmed the accuracy of these methods. They are for reference only.
nimal dministration ^[2]	 Mice^[2] Everolimus, PTK/ZK, and their respective vehicles are prepared each day just before administration to animals an administration volume is individually adjusted based on animal body weight. In C57/BL6 mice, Everolimus is administration on the single of the maximum effect. PTK/ZK is administered at 50 to 100 mg/kg/d orally. Rats^[2] Wistar-Furth rats are divided into two equal groups based on body weight and treated either with vehicle or Evero mg/kg/d orally in mice and 5 mg/kg three times per week orally in rats). Directly after the first measurement at ba 0), Everolimus or vehicle is administered orally by gavage (10 mL/kg) for up to 7 days maximum with subsequent resonance measurements made within 30 min of the last dose.

CUSTOMER VALIDATION

- Nat Med. 2016 Jul;22(7):723-6.
- Nature. 2016 Dec 1;540(7631):119-123.
- Signal Transduct Target Ther. 2021 May 28;6(1):188.
- Nat Cancer. 2023 Oct;4(10):1508-1525.
- Mil Med Res. 2023 Dec 20;10(1):68.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. O'Reilly T, et al. Biomarker Development for the Clinical Activity of the mTOR Inhibitor Everolimus (RAD001): Processes, Limitations, and Further Proposals. Transl Oncol. 2010 Apr;3(2):65-79.

[2]. Lane HA, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res, 2009, 15(5), 1612-1622.

[3]. Zhu Y, et al. Antitumor effect of the mTOR inhibitor Everolimus on human breast cancer stem cells in vitro and in vivo. Tumour Biol. 2012 Oct;33(5):1349-62.

[4]. Kawata T, et al. Dual inhibition of the mTORC1 and mTORC2 signaling pathways is a promising therapeutic target for adult T-cell leukemia. Cancer Sci. 2018 Jan;109(1):103-111.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA