# Ki20227

Cat. No.: HY-10408 CAS No.: 623142-96-1

Molecular Formula:  $C_{24}H_{24}N_4O_5S$ Molecular Weight: 480.54

Target: c-Fms; VEGFR; c-Kit; PDGFR Pathway: Protein Tyrosine Kinase/RTK

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 2 years

-20°C 1 year

**Product** Data Sheet

### **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 62.5 mg/mL (130.06 mM; Need ultrasonic)

|                              | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
| Preparing<br>Stock Solutions | 1 mM                          | 2.0810 mL | 10.4050 mL | 20.8099 mL |
|                              | 5 mM                          | 0.4162 mL | 2.0810 mL  | 4.1620 mL  |
|                              | 10 mM                         | 0.2081 mL | 1.0405 mL  | 2.0810 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.17 mg/mL (4.52 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.17 mg/mL (4.52 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.17 mg/mL (4.52 mM); Clear solution

## **BIOLOGICAL ACTIVITY**

| Description               | Ki20227 is an orally active and highly selective c-Fms tyrosine kinase (CSF1R) inhibitor with IC <sub>50</sub> s of 2 nM, 12 nM, 451 and 217 nM for CSF1R, VEGFR2 (vascular endothelial growth factor receptor-2), c-Kit (stem cell factor receptor) and PDGFRβ (platelet-derived growth factor receptor $\beta$ ). Ki20227 suppresses osteoclast differentiation and osteolytic bone destruction <sup>[1]</sup> . |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC <sub>50</sub> & Target | IC50: 2 nM (CSF1R), 12 nM (VEGFR2), 451 nM (c-Kit) and 217 nM (PDGFR $\beta$ ) $^{[1]}$                                                                                                                                                                                                                                                                                                                            |
| In Vitro                  | Ki20227 (0.1-1000 nM; 72 hours) with 100 and 1,000 nM almost suppresses M-NFS-60 cell growth and HUVEC cell growth,                                                                                                                                                                                                                                                                                                |

Page 1 of 3 www.MedChemExpress.com respectively[1].

Ki20227 (0.1-1000 nM; 1 hour) suppresses M-CSF-dependent c-Fms phosphorylation in a dose-dependent manner<sup>[1]</sup>. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay<sup>[1]</sup>

|                  | 1                                                                                            |  |
|------------------|----------------------------------------------------------------------------------------------|--|
| Cell Line:       | M-NFS-60 cells, HUVEC cells, human A375 melanoma cells                                       |  |
| Concentration:   | 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000 nM                                                    |  |
| Incubation Time: | 72 hours                                                                                     |  |
| Result:          | 100 and 1,000 nM almost suppressed M-NFS-60 cell growth and HUVEC cell growth, respectively. |  |

## Cell Viability $Assay^{[1]}$

| Cell Line:       | RAW264.7 cell lysate                                                         |  |
|------------------|------------------------------------------------------------------------------|--|
| Concentration:   | 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000 nM                                    |  |
| Incubation Time: | 1 hour                                                                       |  |
| Result:          | Suppressed M-CSF-dependent c-Fms phosphorylation in a dose-dependent manner. |  |

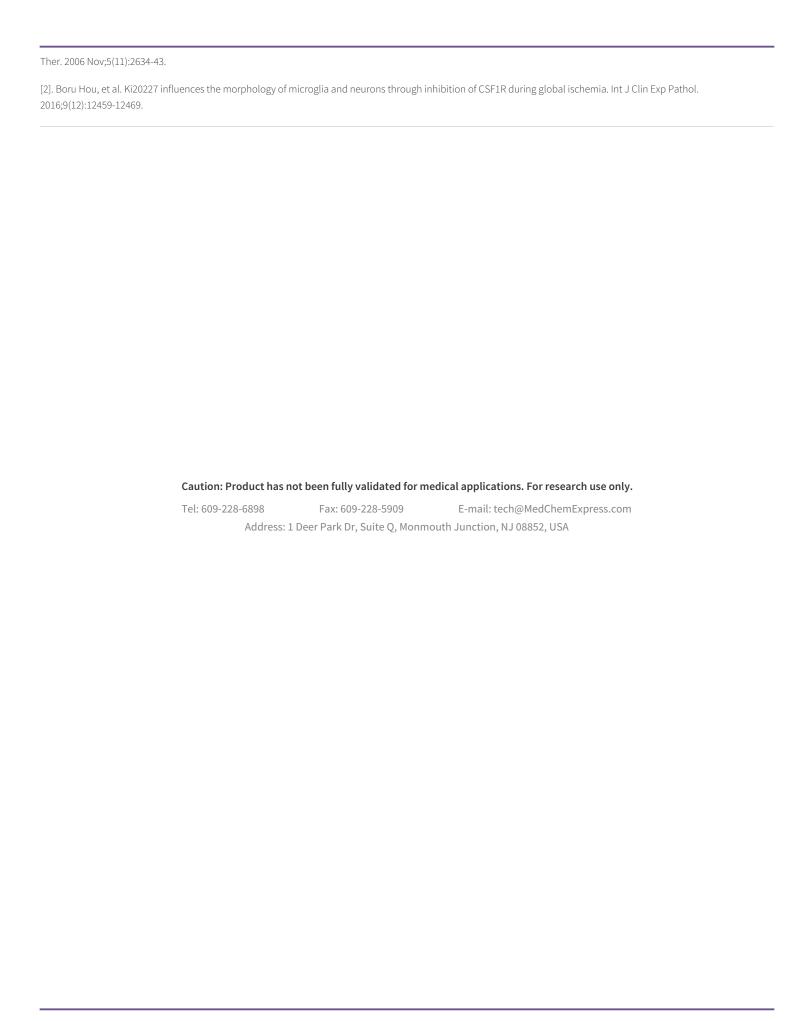
### In Vivo

Ki20227 (orally;10-50 mg/kg/d for 20 days) of 50 mg/kg/d of Ki20227 for 20 days markedly decreases the osteolytic lesion areas<sup>[1]</sup>.

ki20227 during global ischemia led to a significant deficit in microglial density in the CNS in mice, and CSF1R-inhibition led to a significant reduction in the neuronal density of mice $^{[2]}$ .

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

| Animal Model:   | 4-week-old male F344/NJcl-rnu rats <sup>[1]</sup>                                 |  |
|-----------------|-----------------------------------------------------------------------------------|--|
| Dosage:         | 10, 20, and 50 mg/kg                                                              |  |
| Administration: | Orally; once per day for 20 days                                                  |  |
| Result:         | Oral administration of 50 mg/kg/d markedly decreased the osteolytic lesion areas. |  |


## **CUSTOMER VALIDATION**

- Brain Behav Immun. 2020 Oct;89:400-413.
- Neural Regen Res. 2022 Jan;17(1):137-143.
- Cell Signal. 2023 Dec 31:115:111031.
- Int J Clin Exp Pathol. 2016;9(12):12459-12469.
- Harvard Medical School LINCS LIBRARY

See more customer validations on www.MedChemExpress.com

### **REFERENCES**

[1]. Ohno H, et al. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol Cancer



Page 3 of 3 www.MedChemExpress.com