Product Data Sheet

Canagliflozin

Cat. No.: HY-10451 CAS No.: 842133-18-0 Molecular Formula: $C_{24}H_{25}FO_{5}S$ Molecular Weight: 444.52 SGLT Target:

Pathway: Membrane Transporter/Ion Channel

Storage: Powder 3 years 2 years

-80°C In solvent 2 years

-20°C

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: ≥ 50 mg/mL (112.48 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2496 mL	11.2481 mL	22.4962 mL
	5 mM	0.4499 mL	2.2496 mL	4.4992 mL
	10 mM	0.2250 mL	1.1248 mL	2.2496 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 50% PEG300 >> 50% saline Solubility: 10 mg/mL (22.50 mM); Clear solution; Need ultrasonic
- 2. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (5.62 mM); Clear solution
- 3. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (5.62 mM); Clear solution
- 4. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (4.68 mM); Clear solution
- 5. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.08 mg/mL (4.68 mM); Clear solution
- 6. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (4.68 mM); Clear solution
- 7. Add each solvent one by one: 1% DMSO >> 99% saline Solubility: ≥ 0.5 mg/mL (1.12 mM); Clear solution

BIOLOGICAL ACTIVITY				
Description	Canagliflozin (JNJ 28431754) is a selective SGLT2 inhibitor with IC ₅₀ s of 2 nM, 3.7 nM, and 4.4 nM for mSGLT2, rSGLT2, and hSGLT2 in CHOK cells, respectively ^[1] .			
IC ₅₀ & Target	SGLT2			
In Vitro	Canagliflozin inhibits Na $^+$ -dependent 14 C-AMG uptake in CHO-hSGLT2 cells, with an IC $_{50}$ of 4.4 \pm 1.2 nM. Similar IC $_{50}$ values are obtained in CHO-rSGLT2 and CHO-mSGLT2 cells (IC $_{50}$ = 3.7 and 2.0 nM for rat and mouse SGLT2, respectively). Canagliflozin inhibits 14 C-AMG uptake in CHO-hSGLT1 and mSGLT1 cells with IC $_{50}$ of 684 \pm 159 nM and >1,000 nM, respectively [1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
In Vivo	Canagliflozin (30 mg/kg treatment for 4 weeks) reduces blood glucose (BG) levels, respiratory exchange ratio, and body weight gain in DIO mice ^[1] . Canagliflozin (3 mg/kg for 3 weeks) increases urinary glucose excretion (UGE) with no significant change in total food intake compared with that in vehicle-treated rats, leading to a decrease in body weight In ZF rats ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.			
	Animal Model:	Diet-induced obese, insulin resistantmice (DIO) Mice ^[1]		
	Dosage:	30 mg/kg		
	Administration:	Oral gavage; daily; 4 weeks		
	Result:	Reduced BG levels, respiratory exchange ratio, and body weight gain.		
	Animal Model:	Male Zucker fatty (ZF) obese, insulin resistant rats $^{[1]}$		
	Dosage:	3 mg/kg		
	Administration:	Oral gavage; daily; 3 weeks		
	Result:	UGE was increased with no significant change in total food intake compared with that in vehicle-treated rats, leading to a decrease in body weight.		

CUSTOMER VALIDATION

- Nature. 2018 Aug;560(7719):499-503.
- Nat Cancer. 2024 Jan 29.
- Nat Cell Biol. 2022 May 30.
- Mol Cell. 2020 Oct 1;80(1):87-101.e5.
- Cardiovasc Res. 2023 Jul 31;cvad119.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Liang Y, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7(2):e30555.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com