# **Product** Data Sheet



Cat. No.: HY-111445 CAS No.: 440662-09-9 Molecular Formula: C<sub>19</sub>H<sub>16</sub>N<sub>2</sub>O<sub>4</sub> Molecular Weight: 336.34

Target: Epigenetic Reader Domain; DNA/RNA Synthesis

Pathway: Epigenetics; Cell Cycle/DNA Damage

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

#### **SOLVENT & SOLUBILITY**

In Vitro DMSO: 100 mg/mL (297.32 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg       | 10 mg      |
|------------------------------|-------------------------------|-----------|------------|------------|
|                              | 1 mM                          | 2.9732 mL | 14.8659 mL | 29.7318 mL |
|                              | 5 mM                          | 0.5946 mL | 2.9732 mL  | 5.9464 mL  |
|                              | 10 mM                         | 0.2973 mL | 1.4866 mL  | 2.9732 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (7.43 mM); Clear solution

# **BIOLOGICAL ACTIVITY**

Description CeMMEC1 is an inhibitor of BRD4, and also has high affinity for TAF1, with an IC $_{50}$  of 0.9  $\mu$ M for TAF1, and a K $_{d}$  of 1.8  $\mu$ M for TAF1 (2). IC<sub>50</sub> & Target Kd: 1.8 μM (TAF1 (2))<sup>[1]</sup>

IC50: 0.9 μM (TAF1)<sup>[1]</sup>

In Vitro CeMMEC1 is an inhibitor of BRD4, and also has high affinity for TAF1, with an IC $_{50}$  of 0.9  $\mu$ M for TAF1, and a K $_{d}$  of 1.8  $\mu$ M for TAF1 (2) and slso shows high affinity for the bromodomains of CREBBP, EP300, BRD9. CeMMEC1 (1, 10, 20 μM) decreases the number of THP1 cells in S phase in a dose manner. CeMMEC1 also induces apoptosis. CeMMEC1 in combination with (S)-JQ1 displays potently impaired cell viability than treatment alone<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

# **PROTOCOL**

### Kinase Assay [1]

TAF1 binding assays are conducted using the EPIgeneous Binding Domain kit B. Binding is determined by the displacement of an acetylated biotin peptide from a GST-tagged TAF1 protein using HTRF with a  $Eu^{3+}$ -conjugated GST antibody donor and streptavidin-conjugated acceptor. Compounds (CeMMEC1) are dispensed into assay plates, ProxiPlate-384 Plus using an Echo 525 Liquid Handler. Binding assays are conducted in a final volume of 20  $\mu$ L with 5 nM TAF1-GST, 50 nM peptide (SGRGK (ac)GGK (ac)GGAK (ac)RHRK (biotin)-acid), 6.25 nM Streptavidin-XL665, 1:200 Anti-GST-Eu<sup>3+</sup> cryptate and 0.1% DMSO. Assay reagents are dispensed into plates using a Multidrop combi and incubated at room temperature for 3 h. Fluorescence is measured using a PHERAstar microplate reader using the HTRF module with dual emission protocol (A = excitation of 320 nm, emmission of 665 nm, and B = excitation of 320 nm, emission of 620 nm). Raw data are processed to give an HTRF ratio (channel A/B × 10,000), which is used to generate IC<sub>50</sub> curves<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

# Cell Assay [1]

Cells are seeded on clear flat-bottom 96-well or 384-well plates and treated with the indicated compounds (CeMMEC1) for the specified conditions. Live-cell imaging pictures are taken with the Operetta High Content Screening System, 20× objective and nonconfocal mode<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### **REFERENCES**

[1]. Sdelci S, et al. Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nat Chem Biol. 2016 Jul;12(7):504-10.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$ 

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA