PD98059

Cat. No.: HY-12028 CAS No.: 167869-21-8 Molecular Formula: C₁₆H₁₃NO₃ Molecular Weight: 267.28

Target: MEK; Autophagy; Aryl Hydrocarbon Receptor; ERK

Pathway: MAPK/ERK Pathway; Autophagy; Immunology/Inflammation; Stem Cell/Wnt

Storage: 4°C, protect from light

* In solvent: -80°C, 1 year; -20°C, 6 months (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 33.33 mg/mL (124.70 mM; Need ultrasonic)

 $H_2O: < 0.1 \text{ mg/mL (insoluble)}$

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.7414 mL	18.7070 mL	37.4139 mL
	5 mM	0.7483 mL	3.7414 mL	7.4828 mL
	10 mM	0.3741 mL	1.8707 mL	3.7414 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 50% PEG300 >> 50% saline Solubility: 10 mg/mL (37.41 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.08 mg/mL (7.78 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

PD98059 is a potent and selective MEK inhibitor with an IC $_{50}$ of 5 μ M. PD98059 binds to the inactive form of MEK, thereby preventing the activation of MEK1 (IC₅₀ of 2-7 μM) and MEK2 (IC₅₀ of 50 μM) by upstream kinases. PD98059 is a ERK1/2 signaling inhibitor. PD98059 is a ligand for the aryl hydrocarbon receptor (AHR), and suppresses TCDD binding (IC50 of 4 µM) and AHR transformation (IC $_{50}$ of 1 μ M). PD98059 also inhibits Mycobacterium bovis Bacillus CalmetteGuerin (BCG)-induced $autophagy ^{[1][2][3]}.\\$

IC₅₀ & Target

MEK1 $2-7 \mu M (IC_{50})$ MEK2 50 μM (IC₅₀) ERK1

ERK2

Autophagy

In Vitro

PD98059 (20 μM; 24 hours) causes G1-phase cell cycle arrest in OCI-AML-3 cells^[4].

PD98059 (10 μ M; 22 hours) results in concentration-dependent reductions in the dually phosphorylated forms of ERK1 and ERK2^[1]. PD98059 both prevents ERK activation and blocks formation of TDP-43 and HuR-positive SGs^[7].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cycle Analysis^[4]

Cell Line:	OCI-AML-3 cells
Concentration:	20 μΜ
Incubation Time:	24 hours
Result:	Caused G1-phase cell cycle arrest.

Western Blot Analysis $^{[1]}$

Cell Line:	MCF10A-Neo, MCF10ANeoT cells	
Concentration:	10 μΜ	
Incubation Time:	22 hours	
Result:	Phosphorylated ERK forms were almost completely eliminated in both cell lines.	

In Vivo

PD98059 (10 mg/kg; i.p.; 1 and 6 hours after Zymosan) significantly reduces the level of p-ERK1/2 in zymosan-injected mice^[3]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male CD mice ^[3]	
Dosage:	10 mg/kg	
Administration:	Intraperitoneal injection; 1 and 6 hours after Zymosan	
Result:	Significantly reduced the level of p-ERK1/2.	

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2023 Mar 15;8(1):107.
- Signal Transduct Target Ther. 2022 Aug 31;7(1):290.
- Signal Transduct Target Ther. 2019 Dec 13;4:60.
- Immunity. 2021 Sep 14;54(9):2042-2056.e8.
- Nat Immunol. 2023 Nov;24(11):1813-1824.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Reiners JJ Jr, et al. PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol. 1998 Mar;53(3):438-45.

[2]. Alessi DR, et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem, 1995, 270(46), 27489-27494.

- [3]. Di Paola R, et al. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacol Res. 2010 Feb;61(2):175-87.
- [4]. Kojima K, et al. Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res. 2007 Apr 1;67(7):3210-9.
- [5]. Kim KY, et al. Inhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells. Int J Mol Sci. 2017 May 18;18(5). pii: E1088.
- [6]. Jia Luo, et al. DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway.
- [7]. Sarah J Parker, et al. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One. 2012;7(8):e42277.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com