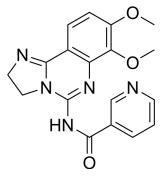


Product Data Sheet

PIK-90

Cat. No.: HY-12030 677338-12-4 CAS No.: Molecular Formula: $C_{18}H_{17}N_{5}O_{3}$ Molecular Weight: 351.36

Target: PI3K; DNA-PK


Pathway: PI3K/Akt/mTOR; Cell Cycle/DNA Damage

Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 6.67 mg/mL (18.98 mM; ultrasonic and adjust pH to 2 with HCl)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8461 mL	14.2304 mL	28.4608 mL
	5 mM	0.5692 mL	2.8461 mL	5.6922 mL
	10 mM	0.2846 mL	1.4230 mL	2.8461 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 0.67 mg/mL (1.91 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 0.67 mg/mL (1.91 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 0.67 mg/mL (1.91 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	PIK-90 is a DNA-PK and	PIK-90 is a DNA-PK and PI3K inhibitor, which inhibits p110 α , p110 γ and DNA-PK with IC ₅₀ s of 11, 18 and 13 nM, respectively.					
IC ₅₀ & Target	p110α	p110γ	p110δ	p110β			
	11 nM (IC ₅₀)	18 nM (IC ₅₀)	58 nM (IC ₅₀)	350 nM (IC ₅₀)			
	hsVPS34	PI3KC2β	PI3KC2α	DNA-PK			
	830 nM (IC ₅₀)	64 nM (IC ₅₀)	47 nM (IC ₅₀)	13 nM (IC ₅₀)			

	ATM 610 nM (IC $_{50}$) ATR 15 μ M (IC $_{50}$)	PI4KIIIα 830 nM (IC ₅₀)	PI4KIIIβ 3.1 μM (IC ₅₀)	mTORC1 1.05 μM (IC ₅₀)		
In Vitro	PIK-90 also inhibits p110 β , p110 δ , p13KC2 α , P13KC2 β , hsVPS34, P14KIII α , P14KIII β , ATR, ATM and mTORC1 with IC ₅₀ s of 350 nM, 58 nM, 47 nM, 64 nM, 830 nM, 830 nM, 3.1 μ M, 15 μ M, 610 nM and 1.05 μ M, respectively ^[1] . To determine the effects of PIK-90 on chronic lymphocytic leukemia (CLL) cell viability, CLL cells from different patients are incubated with various concentrations of PIK-90 (1 μ M and 10 μ M) for 24, 48, and 72 hours. PIK-90 reveals the strong apoptosis-inducing effects at both concentrations and at all different time points. Using a concentration of 10 μ M, PIK-90 reduces the viability of CLL cells to 51.1% plus or minus 6.6% at 24 hours, whereas 1 μ M PIK-90 reduces the viability to 77.8% plus or minus 6.4% ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.					

In Vivo

To test the efficacy of Roscovitine and PIK-90 in vivo, GBM43 cells are implanted s.c. into nude mice. Mice with established tumors are randomized into four treatment groups: vehicle (PBS: H_2O), Roscovitine, PIK-90, or PIK-90 plus Roscovitine. After 12 d of treatment, both Roscovitine and PIK-90 show clear single-agent efficacy, with tumor size in mice treated with Roscovitine and PIK-90 in combination significantly smaller than either vehicle or monotherapy-treated controls. Roscovitine is less effective than PIK-90 in blocking proliferation (levels of Ki-67), whereas combination therapy shows essentially additive antiproliferative effects $^{[3]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [2]

To determine the viability of CLL B cells, 200 μ L cells are removed from the wells of a 24-well plate at the indicated time points and incubated for 15 minutes in fluorescence-activated cell sorter buffer (RPMI+0.5% BSA) containing 40 nM 3,3'-dihexyloxacarbocyanine iodide (DiOC₆) and 10 μ g/mL Propidium iodide (PI). Within 30 minutes, the cells are then analyzed by flow cytometry. Viable cells show high DiOC₆ and low PI fluorescence, whereas apoptotic cells have low DiOC₆ and PI fluorescence; necrotic cells are characterized by low DiOC₆ and high PI fluorescence. The normal PBMCs are also cultured under the same conditions, with or without the various PI3K inhibitors (e.g., PIK-90, 1 μ M and 10 μ M), Fludarabine, and with or without stromal cell support, and their viability is also determined by staining with DiOC₆ and PI^[2]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [3]

Mice^[3]

Human primary GBM43 cells (10^6) are injected s.c. just caudal to the left forelimb in 4- to 6-wk-old female *BALB/c nu/nu* mice . After tumors are established ($50-100~\text{mm}^3$), mice are randomly allocated to daily i.p. treatment with 40 mg/kg PIK-90 (DMSO:H₂O), 50~mg/kg Roscovitine (DMSO:PBS), 40~mg/kg PIK-90 plus 50~mg/kg Roscovitine, and DMSO:H₂O:PBS (control). Tumor diameters are measured with calipers at 3-d intervals, and volumes are calculated.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Molecules. 2020 Apr 23;25(8):1980.
- bioRxiv. 2024 Feb 10.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Knight ZA, et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell. 2006 May 19;125(4):733-47.
- [2]. Niedermeier M, et al. Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood. 2009 May 28;113(22):5549-57.
- [3]. Cheng CK, et al. Dual blockade of lipid and cyclin-dependent kinases induces synthetic lethality in malignant glioma. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12722-7.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-m

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com