Screening Libraries

Product Data Sheet

DMH-1

Cat. No.: HY-12273 CAS No.: 1206711-16-1 Molecular Formula: $C_{24}H_{20}N_4O$ Molecular Weight: 380.44

Target: Autophagy; TGF-β Receptor Pathway: Autophagy; TGF-beta/Smad Storage: Powder -20°C 3 years

4°C 2 years In solvent -80°C 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 11.5 mg/mL (30.23 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6285 mL	13.1427 mL	26.2854 mL
	5 mM	0.5257 mL	2.6285 mL	5.2571 mL
	10 mM	0.2629 mL	1.3143 mL	2.6285 mL

DMH-1 is a potent and selective BMP inhibitor with IC $_{50}$ s of 27/107.9/<5/47.6 nM for ALK1/ALK2/ALK3/ALK6, respectively.

Please refer to the solubility information to select the appropriate solvent.

In Vivo

Description

1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1 mg/mL (2.63 mM); Clear solution

BIOLOGICAL ACTIVITY

IC ₅₀ & Target	IC50: 27 nM (ALK1), 107.9 nM (ALK2), <5 nM (ALK3), 47.6 nM (ALK6) ^[1]
In Vitro	DMH-1 (0.5 μ M) induces regulation of OCT4, Nanog, and PAX6 protein expression. DMH-1 significantly reduces the percentage of cells expressing the pluripotency marker proteins OCT4 and Nanog in both SM3 and CA6 cells. PAX6 expression is significantly up-regulated by day 5 and day 7 in CA6 and SM3 cells, respectively. DMH-1 induces regulation of pluripotency and neural precursor marker mRNAs. PAX6 can regulate the expression of SOX1 independently by manipulating the DMH-1 concentration during the neural induction of hiPSCs ^[2] . DMH-1 (5 μ M and 10 μ M) inhibits CDDP-induced autophagy in HeLa cells and enhances the ability of CDDP to reduce HeLa cell viability, inhibits tamoxifen-induced autophagy in MCF-7 cells and enhances the ability of Tamoxifen (HY-13757A) to reduce MCF-7 cell viability, inhibits 5-FU-induced autophagy in both MCF-7 and HeLa cells but does not affect the inhibitory effects of 5-FU on MCF-7 and HeLa cell

viability. DMH-1 enhances the apoptotic induction effects of CDDP on HeLa cells after 24 h treatment. DMH-1 inhibits HeLa and MCF-7 cell proliferation $^{[3]}$. DMH-1 (20 μ M) reduces the canonical phosphorylation of Smads 1,5 and 9. DMH-1 in combination with Cisplatin significantly decreases Ki-67 positive staining in the OVCAR8 cells. DMH-1 (20 μ M) upregulates JAG1, reduces CYP1B1 and increases HAPLN1 expression in both OVCAR8 and NCI-RES cells $^{[4]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

DMH1 (5 mg/kg, i.p.) treatment significantly reduces the tumor growth in human lung cancer xenograft model^[5]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [3]

Cells are seeded in 96-well plates and treated with different drugs for appropriate time. Then 5 mg/mL MTT is added and incubated for 4 h at 37°C. Medium is then removed and 200 μ L of DMSO is added to dissolve the crystal. Absorbance is measured at a wavelength of 490 nm with a plate reader.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal
Administration [5]

Sub-confluent A549 cells are trypsinized and then suspended in serum free RPMI 1640 medium. The cell suspension (1×10^6 cells in 100 μ L medium for each injection) is injected subcutaneously into both the right and left flanks of eight-week old NOD SCID mice (n=5 for each group). Mice are given Intraperitoneal (i.p.) injection of the vehicle (12.5% 2-hydroxypropyl- β -cyclodextrin) or 5 mg/kg DMH1 every other day. The tumor sizes are measured with a vernier caliper from the sixth day to the fourth week after tumor implantation. The tumor volume (V) is calculated according to the formulation: Volume=(width) 2 ×length/2. The tumor tissues are dissected at the end of study, and are sectioned and stained with H & E, and for immunohistochemical analysis.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Compos Part B-Eng. 2023 Apr 6, 110711.
- Dev Cell. 2016 Oct 24;39(2):239-253.
- Cell Rep. 2019 Feb 12;26(7):1709-1717.e3.
- Cell Prolif. 2023 Dec 2:e13577.
- Stem Cell Res Ther. 2022 Sep 2;13(1):436.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Engers DW, et al. Synthesis and structure-activity relationships of a novel and selective bone morphogenetic protein receptor (BMP) inhibitor derived from the pyrazolo[1.5-a]pyrimidine scaffold of dorsomorphin: the discovery of mL347 as an ALK2 versus ALK3 selective mLPCN probe. Bioorg Med Chem Lett. 2013 Jun 1;23(11):3248-52.

[2]. Neely MD, et al. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci. 2012 Jun 20;3(6):482-91.

[3]. Sheng Y, et al. DMH1 (4-[6-(4-isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline) inhibits chemotherapeutic drug-induced autophagy. Acta Pharm Sin B. 2015 Jul;5(4):330-6.

[4]. Hover LD, et al. Small molecule inhibitor of the bone morphogenetic protein pathway DMH1 reduces ovarian cancer cell growth. Cancer Lett. 2015 Nov 1;368(1):79-87.

5]. Hao J, et al. DMH1, a small	molecule inhibitor of BMP type	i receptors, suppresses growth	and invasion of lung cancer. PLoS One. 2	014 Mar 6;9(6):e90748.
			dical applications. For research use o	
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpress. uth Junction, NJ 08852, USA	com
	Address. I De	errance, saite Q, monnio	atii 3uiietioii, N3 00032, 03/1	

Page 3 of 3 www.MedChemExpress.com