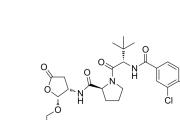
## Belnacasan

| Cat. No.:          | HY-13205                                                        |       |         |
|--------------------|-----------------------------------------------------------------|-------|---------|
| CAS No.:           | 273404-37-8                                                     |       |         |
| Molecular Formula: | C <sub>24</sub> H <sub>33</sub> ClN <sub>4</sub> O <sub>6</sub> |       |         |
| Molecular Weight:  | 509                                                             |       |         |
| Target:            | Caspase                                                         |       |         |
| Pathway:           | Apoptosis                                                       |       |         |
| Storage:           | Powder                                                          | -20°C | 3 years |
|                    |                                                                 | 4°C   | 2 years |
|                    | In solvent                                                      | -80°C | 2 years |
|                    |                                                                 | -20°C | 1 year  |

### **SOLVENT & SOLUBILITY**

|        |                              | Solvent Mass<br>Concentration                                                                                                         | 1 mg               | 5 mg      | 10 mg      |  |  |
|--------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|------------|--|--|
|        | Preparing<br>Stock Solutions | 1 mM                                                                                                                                  | 1.9646 mL          | 9.8232 mL | 19.6464 mL |  |  |
|        |                              | 5 mM                                                                                                                                  | 0.3929 mL          | 1.9646 mL | 3.9293 mL  |  |  |
|        | 10 mM                        | 0.1965 mL                                                                                                                             | 0.9823 mL          | 1.9646 mL |            |  |  |
|        | Please refer to the so       | lubility information to select the app                                                                                                | propriate solvent. |           |            |  |  |
| n Vivo |                              | 1. Add each solvent one by one: 50% PEG300 >> 50% saline<br>Solubility: 5 mg/mL (9.82 mM); Clear solution; Need ultrasonic            |                    |           |            |  |  |
|        |                              | 2. Add each solvent one by one: 15% Cremophor EL >> 85% Saline<br>Solubility: 3.33 mg/mL (6.54 mM); Clear solution; Need ultrasonic   |                    |           |            |  |  |
|        |                              | 3. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.91 mM); Clear solution |                    |           |            |  |  |
|        |                              | 4. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)<br>Solubility: ≥ 2.5 mg/mL (4.91 mM); Clear solution         |                    |           |            |  |  |
|        |                              | one by one: 10% DMSO >> 90% cor<br>g/mL (4.91 mM); Clear solution                                                                     | n oil              |           |            |  |  |


### **BIOLOGICAL ACTIVITY**

Description

Belnacasan (VX-765) is an orally bioactive proagent of VRT-043198, which is a potent and selective inhibitor of IL-converting enzyme (ICE)/caspase-1 with K<sub>i</sub>s of 0.8 nM and less than 0.6 nM for caspase-1 and caspase-4, respectively. Belnacasan (VX-

# Product Data Sheet

NH<sub>2</sub>





|                           | 765) inhibits the release of LPS-induced IL-1 $\beta$ and IL-18 by human PBMCs with an IC <sub>50</sub> of ~0.7 $\mu$ M <sup>[1][2]</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC <sub>50</sub> & Target | Caspase-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| In Vivo                   | Belnacasan reduces inflammatory response in murine models of inflammatory disease <sup>[1]</sup> .<br>Belnacasan (50-200 mg/kg) significantly reduces serum IL-1β levels by as much as 60%. It is noteworthy that the effect of<br>Belnacasan on the release of IL-1β induced by LPS reached a plateau at 100 mg/kg. Belnacasan (25-100 mg/kg × 2)<br>significantly reduces ear edema. Belnacasan also dose-dependently reduces the concentrations of cytokines, chemokines,<br>and inflammatory mediators in the ear biopsy samples <sup>[2]</sup> .<br>Belnacasan (25-200 mg/kg) significantly delays the time to seizure onset by 1.5- to twofold (p<0.01), reduces the number of<br>seizures by 40% (p<0.01) and the total time spent in EEG seizure activity by 30 to 50% (p<0.01) <sup>[3]</sup> .<br>MCE has not independently confirmed the accuracy of these methods. They are for reference only. |

### PROTOCOL

| Kinase Assay <sup>[2]</sup>                | Enzyme inhibition is assayed by tracking of the rate of hydrolysis of an appropriate substrate labeled with either p-<br>nitroaniline or aminomethyl coumarin (AMC) as follows: ICE/caspase-1, suc-YVAD-p-nitroanilide; caspase-4, Ac-WEHD-AMC;<br>caspase-6, Ac-VEID-AMC; caspase-3, -7, -8, and -9, Ac-DEVD-AMC; and granzyme B, Ac-IEPD-AMC. Enzymes and substrates are<br>incubated in a reaction buffer [10 mM Tris, pH 7.5, 0.1% (w/v) CHAPS, 1 mM dithiothreitol, and 5% (v/v) DMSO] for 10 min at<br>37°C. Glycerol is added to the buffer at 8% (v/v) for caspase-3, -6, and -9 and granzyme B to improve stability of enzymes.<br>The rate of substrate hydrolysis is monitored using a fluorometer. Assays for cathepsin B and trypsin are performed <sup>[2]</sup> .<br>MCE has not independently confirmed the accuracy of these methods. They are for reference only.                                                                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell Assay <sup>[1]</sup>                  | A total of 2×10 <sup>5</sup> cells/well (100 μL cell suspension) is distributed in triplicate in flat-bottom 96-well plates. Either 50 μL of<br>Belnacasan (40 μM in RPMI 1640 complete medium containing 0.2% DMSO) or vehicle control is added to appropriate wells.<br>Following a 30-min incubation at 37°C, 50 μL of LPS diluted in RPMI 1640 complete medium is added at final concentrations<br>varying from 0.001 to 10 ng/mL. Cells are returned to a 37°C incubator. At 4 h after LPS addition, 75 μL of supernatant is<br>removed from wells, cleared by centrifugation for 5 min at 1500 rpm, and stored at 4°C until assayed. Cells are returned to a<br>37°C incubator until 24 h after LPS addition, at which time 100 μL of supernatant is removed, cleared by centrifugation, and<br>stored at 4°C. Supernatants are tested using ELISA kits for IL-1β, IL-6, IL-18, and IL-1α <sup>[1]</sup> .<br>MCE has not independently confirmed the accuracy of these methods. They are for reference only.                                                                                                           |
| Animal<br>Administration <sup>[2][3]</sup> | Mice <sup>[2]</sup><br>Single doses of Belnacasan (10, 21, 43, and 84 mg/kg) in vehicle (25% Cremophor EL in water) are administered via oral<br>gavage. Blood samples (approximately 0.25-0.3 mL) are collected before dose administration and 0.167, 0.25, 0.5, 1, 1.5, 2, 3,<br>4, 6, 8, and 24 h after dosing via the retroorbital sinus and processed for plasma. A high-performance liquid<br>chromatography/mass spectrometry methodology is used to determine the concentration of Belnacasan and VRT-043198 in<br>plasma samples. Noncompartmental analysis is carried out using WinNonlin Pro, version 4.0.1.<br>Rats <sup>[3]</sup><br>Male Sprague-Dawley rats (250-280 g) are used. Belnacasan (25, 50, 200 mg/kg) is dissolved in 20% Cremophor and injected<br>ip in rats once a day for 3 consecutive days. On the fourth day, rats receive Belnacasan, 45 min and 10 min before<br>intrahippocampal injection of kainic acid. Respective controls are similarly injected with vehicle before kainic acid.<br>MCE has not independently confirmed the accuracy of these methods. They are for reference only. |

### CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2022 Jun 24;7(1):190.
- Cell Metab. 2019 Sep 3;30(3):477-492.e6.

- Bioact Mater. 2024 Apr, 34, Pages 37-50.
- J Exp Med. 2022 Oct 3;219(10):e20212117.
- Adv Sci (Weinh). 2023 Dec 25:e2303341.

See more customer validations on <u>www.MedChemExpress.com</u>

#### REFERENCES

[1]. Stack JH, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol. 2005 Aug 15;175(4):2630-4.

[2]. Wannamaker W, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl]-methanoyl]-amino}-3,3-dimethyl-butanoyl]-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007 May;321(2):509-16.

[3]. Ravizza T, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia. 2006 Jul;47(7):1160-8.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA