Rimonabant

Cat. No.: CAS No.: Molecular Formula:	HY-14136 168273-06-1 C H CLNO	CI
Molecular Weight: Target:	463.79 Cannabinoid Receptor; Bacterial	HN-N N-N
Pathway:	GPCR/G Protein; Neuronal Signaling; Anti-infection	
Storage:	4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
Prepa Stock		1 mM	2.1561 mL	10.7807 mL	21.5615 mL
		5 mM	0.4312 mL	2.1561 mL	4.3123 mL
		10 mM	0.2156 mL	1.0781 mL	2.1561 mL

Description	Rimonabant (SR141716) is a highly potent, brain penetrated and selective central cannabinoid receptor (CB1) antagonist with a K _i of 1.8 nM. Rimonabant (SR141716) also inhibits Mycobacterial membrane protein Large 3 (MMPL3).		
IC ₅₀ & Target	CB1 1.8 nM (Ki)		
In Vitro	Rimonabant could inhibit the growth of Mtb with an MIC of 54 μM. MmpL3, an anti-TB target, is the direct target of rimonabant ^[2] . Rimonabant itself (10 ⁻¹² -10 ⁻³ M, 12 concentrations) inhibits the basal binding of [³⁵ S]GTPgS to human cortical membranes in a concentration dependent manner, with a -log IC ₅₀ of 4.7±0.2 (IC ₅₀ = 20 μM) and a maximal inhibition of 48±2% ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	Rimonabant (10 mg/kg by gavage) is fed for 2 weeks to 3-month-old male obese Zucker rats as an impaired glucose tolerance model and for 10 weeks to 6-month-old male obese Zucker rats as a model of the metabolic syndrome. RANTES and MCP-1 serum levels are increased in obese vs lean Zucker rats and significantly reduced by long-term treatment with Rimonabant, which slowes weight gain in rats with the metabolic syndrome. Neutrophils and monocytes are significantly increased in young and old obese vs lean Zucker rats and lowered by Rimonabant. Platelet-bound fibrinogen is significantly		

Product Data Sheet

enhanced in obese vs lean Zucker rats of both age, and is reduced by Rimonabant ^[1]. Rimonabant (20 mg daily) exhibits a significant reduction in many cardiometabolic risk factors^[4]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cell. 2019 Jan 24;176(3):636-648.e13.
- Autophagy. 2021 Nov;17(11):3592-3606.
- Structure. 2022 Aug 7;S0969-2126(22)00278-7.
- Cancers (Basel). 2021 Jan 18;13(2):330.
- Neuroscience. 2019 Feb 19. pii: S0306-4522(19)30117-4.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Seely KA, Brents LK, Franks LN, Rajasekaran M, Zimmerman SM, Fantegrossi WE, Prather PL. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: Implications for opioid/cannabinoid interaction studies. Neuropharmacology. 2012 Oct;63(5):9

[2]. Zhang B, et al. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell. 2019 Jan 24;176(3):636-648.e13.

[3]. Erdozain, A. M. et al. The inverse agonist effect of rimonabant on G protein activation is not mediated by the cannabinoid CB1 receptor: Evidence from postmortem human brain Biochemical Pharmacology (2012), 83(2), 260-268.

[4]. Leite, C.E., et al. Rimonabant: An antagonist drug of the endocannabinoid system for the treatment of obesity. Pharmacol Rep 61 217-224 (2009).

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA