

Product Data Sheet

UPF 1069

Cat. No.: HY-14478
CAS No.: 1048371-03-4

Molecular Formula: $C_{17}H_{13}NO_3$ Molecular Weight:279.29Target:PARP

Pathway: Cell Cycle/DNA Damage; Epigenetics

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (358.05 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.5805 mL	17.9025 mL	35.8051 mL
	5 mM	0.7161 mL	3.5805 mL	7.1610 mL
	10 mM	0.3581 mL	1.7903 mL	3.5805 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.95 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.95 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	UPF 1069 is a PARP inhibitor, with IC $_{50}\text{s}$ of 8 and 0.3 μM for PARP-1 and PARP-2, respectively.		
IC ₅₀ & Target	PARP-2 0.3 μM (IC ₅₀)	PARP-1 8 μM (IC ₅₀)	
In Vitro	UPF 1069 (Compound 55) is a PARP inhibitor, with IC ₅₀ s of 8 and 0.3 μ M for PARP-1 and PARP-2, respectively ^[1] . UPF 1069 (1 μ M) reduces the residual PARP activity by approximately 80% of PARP-1-deficient fibroblasts, but only slightly inhibits the		

enzymic activity in wild-type fibroblasts. UPF 1069 (0.1-1 μ M) markedly enhances CA1 hippocampal damage. UPF 1069 (10 μ M) also exacerbates oxygen-glucose deprivation (OGD) damage in organotypic hippocampal slices. However, UPF 1069

alleviates the damage cuased by OGD in mixed cortical cell cultures, shows a potent neuroprotective activity both at a concentration (1 μ M) selectively acting on PARP-2 and at a concentration (10 μ M) inhibiting both PARP-1 and PARP-2 activities^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay [2]

PARP activity is evaluated by utilizing commercially available recombinant bovine PARP-1 and mouse PARP-2. Briefly, the enzymatic reaction is carried out in $100~\mu\text{L}$ of 50~mM Tris-HCl (pH 8.0) containing 5~mM MgCl₂, 2~mM dithiothreitol, $10~\mu\text{g}$ sonicated calf thymus DNA, $0.2~\mu\text{Ci}$ [adenine-2,8- ^3H]NAD and recombinant enzyme PARP-1 or PARP-2 (0.03~U per sample). Different concentrations of the putative inhibitors are added, and the mixture is incubated for 1~h at 37°C . The reaction is terminated by adding 1~mL of 10% trichloroacetic acid (w/v) and centrifuged. Pellets are then washed twice with 1~mL of H_2 0 and resuspended in 1~mL of 0.1~M NaOH. The radioactivity incorporated from [adenine-2,8- ^3H]NAD into proteins is evaluated by liquid scintillation spectrometry^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• J Mol Med (Berl). 2019 Aug;97(8):1183-1193.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Pellicciari R, et al. On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem. 2008 Jun;3(6):914-23.

[2]. Moroni F, et al. Selective PARP-2 inhibitors increase apoptosis in hippocampal slices but protect cortical cells in models of post-ischaemic brain damage.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA