Proteins

Screening Libraries

Product Data Sheet

Amsilarotene

Cat. No.: HY-14653 CAS No.: 125973-56-0 Molecular Formula: $\mathsf{C}_{20}\mathsf{H}_{27}\mathsf{NO}_3\mathsf{Si}_2$

Molecular Weight: 385.6

Target: RAR/RXR; Apoptosis

Pathway: Metabolic Enzyme/Protease; Apoptosis

Storage: Powder

3 years 4°C 2 years

-80°C In solvent 6 months

-20°C

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (259.34 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.5934 mL	12.9668 mL	25.9336 mL
	5 mM	0.5187 mL	2.5934 mL	5.1867 mL
	10 mM	0.2593 mL	1.2967 mL	2.5934 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.48 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.48 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.48 mM); Clear solution

BIOLOGICAL ACTIVITY

Description Amsilarotene (TAC-101; Am 555S), an orally active synthetic retinoid, has selective affinity for retinoic acid receptor α (RAR- α) binding with K_i of 2.4, 400 nM for RAR- α and RAR- β . Amsilarotene induces the apoptotic of human gastric cancer,

hepatocellular carcinoma and ovarian carcinoma cells. Amsilarotene can be used for the research of cancer^{[1][2][3]}.

IC₅₀ & Target $RAR\alpha$ RARB

> 2.4 nM (Ki) 400 nM (Ki)

In Vitro

Amsilarotene (0, 10, 25 μ M; 24 hours) induces apoptosis of human epithelial ovarian carcinoma-derived cell lines in a concentration-dependent manner [2].

Amsilarotene (10, 20 μ M; 0, 3, 6, and 9 days) inhibits the proliferation of BxPC-3 and MIAPaCa-2 cells^[3].

Amsilarotene (10 μ M; 48 hours) increases the proportion of sensitive BxPC-3 cells in the G_1 phase^[3].

Amsilarotene (10 μ M; 0, 3, 6, 24, 48, 72 hours) inhibits the retinoblastoma-gene product (RB) phosphorylation in BxPC-3 cells between 24 and 72 hours^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Apoptosis Analysis^[2]

Cell Line:	RMG-I, RMG-II, RTSG, RMUG-S, RMUG-L, and KF cells
Concentration:	0, 10, 25 μΜ
Incubation Time:	24 hours
Result:	Induced apoptosis in a concentration-dependent manner in all of the cell lines, except KF cells.

Cell Proliferation Assay^[3]

Cell Line:	BxPC-3, MIAPaCa-2, AsPC-1 cells
Concentration:	10 and 20 μM
Incubation Time:	0, 3, 6, and 9 days.
Result:	Inhibited the proliferation of BxPC-3 and MIAPaCa-2 cells, but not the proliferation of AsPC-1 cells.

Cell Cycle Analysis^[3]

Cell Line:	Sensitive BxPC-3 cells
Concentration:	10 μΜ
Incubation Time:	48 hours
Result:	The proportion of cells in the G_1 phase increased from 43% of untreated control cells to 86%

In Vivo

 $Amsilar otene~(8~mg/kg/day~orally~for~30~days)~inhibits~the~RMG-II~tumor~growth~in~nude~mice^{\left[2\right]}.$

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	6-week-old female BALB/c nu/nu mice with subcutaneous RMG-II tumors ^[2]
Dosage:	8 mg/kg/day
Administration:	Orally for 30 days
Result:	The maximal tumor growth-inhibiting effect was seen on day 31 of administration, when there was a 45% reduction of relative tumor volume (RTV).

REFERENCES

[1]. Sun SY, et al. Differential effects of synthetic nuclear retinoid receptor-selective retinoids on the growth of human non-small cell lung carcinoma cells. Cancer Res. 1997 Nov 1;57(21):4931-9.

[2]. Suzuki N, et al. A novel retinoid, 4-[3,5-bis (trimethylsilyl) benzamido] benzoic acid (TAC-101), induces apoptosis of human ovarian carcinoma cells and show as a new antitumor agent for clear cell adenocarcinoma. Gynecol Oncol. 2004 Sep;94(3):643-9.	ıs potential
[3]. Fujimoto K, et al. Induction of cell-cycle arrest and apoptosis by a novel retinobenzoic-acid derivative, TAC-101, in human pancreatic-cancer cells. Int J Cancella May 17;81(4):637-44.	er. 1999

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com