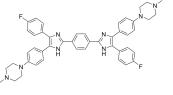
Proteins

Product Data Sheet

DIZ-3


Cat. No.: HY-146812 CAS No.: 2675490-72-7 Molecular Formula: $C_{46}H_{44}F_{2}N_{8}$ Molecular Weight: 746.89

Target: G-quadruplex

Pathway: Cell Cycle/DNA Damage

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

DIZ-3 is a selective multimeric G4 ligand based on a G4-ligand-dimerizing strategy. DIZ-3 intercalates into the G4-G4 interface, stabilizing the higher-order structure. DIZ-3 induces cell cycle arrest and apoptosis, and thus inhibits cell proliferation in alternative lengthening of telomere (ALT) cancer cells^[1].

In Vitro

DIZ-3 (0-40 μM; 24 hours) inhibits the proliferation in an ALT cancer cell line^[1].

DIZ-3 (0.6-2.5 μM; 24 hours) induces U2OS cell cycle arrest and Apoptosis in ALT cancer cells^[1].

DIZ-3 (0.12, 0.25, 0.5 μM; 7 days) causes colony formation and would healing assays carried out in U2OS cells^[1].

DIZ-3 (0.12, 0.25, 0.5 μ M; 24 h) significantly inhibits migration of U2OS cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[1]

Cell Line:	Human bone osteosarcoma U2OS cells, normal BJ fibroblasts
Concentration:	0-40 μM
Incubation Time:	24 hours
Result:	Caused a significant dose-dependent cytotoxic effect on U2OS cancer cells with an IC $_{50}$ of 2.1 μ M. Induced much weaker growth inhibition on normal BJ fibroblasts with an IC $_{50}$ of 29.3 μ M.

Apoptosis Analysis $^{[1]}$

Cell Line:	U2OS cells
Concentration:	0.6, 1.2, 2.5 μΜ
Incubation Time:	24 hours
Result:	Induced significant apoptosis in U2OS cells (the percentage of apoptotic cells increased from 10.1% to 24.9%).

Cell Cycle Analysis^[1]

Cell Line: U2OS cells	
-----------------------	--

Concentration:	0.6, 1.2, 2.5 μM
Incubation Time:	24 hours
Result:	Induced the apparent accumulation of cells in the S phase (increasing from 24.0% to 32.2%) in a dose-dependent manner.

REFERENCES

[1]. Ming-Hao Hu, et al. Dimeric aryl-substituted imidazoles may inhibit ALT cancer by targeting the multimeric G-quadruplex in telomere. Eur J Med Chem. 2020 Jan 15;186:111891.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com