MAO-B-IN-21

Cat. No.: HY-149984 CAS No.: 2956426-18-7 Molecular Formula: $C_{24}H_{25}CIN_2O_4$

Molecular Weight: 440.92

Target: Monoamine Oxidase Pathway: **Neuronal Signaling**

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description MAO-B-IN-21 is an excellent MAO-B inhibitor with antioxidant activity and anti-Aβ aggregation activity. MAO-B-IN-21 also exhibits metal-ion chelating ability, anti-neuroinflammation (NO, $TNF-\alpha$), neuroprotective activity and BBB permeability. MAO-B-IN-21 significantly improves the memory and cognitive impairment in Aβ1-42 induced Alzheimer's disease mice

 $model^{[1]}$.

IC₅₀ & Target MAO-B

In Vitro MAO-B-IN-21 (37.5 μM in methanol) blocks Cu²⁺-induced ROS production, due to metal-chelating property and/or its

antioxidant capacity to capture the free radicals from Cu²⁺-Ascorbate redox system^[1].

MAO-B-IN-21 (25 μM; 24 h; 37 🛭) inhibits self-induced Aβ₁₋₄₂ aggregation and disaggregate self-induced Aβ1-42 fibrils^[1].

MAO-B-IN-21 (2.5-25 μ M; 24 h) inhibits ROS production in LPS-stimulated BV-2 microglia cells^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo MAO-B-IN-21 (30 mg/kg; ig; single dose) could cross the BBB easily in Balb/C mice^[1].

MAO-B-IN-21 (8 mg/kg and 32 mg/kg; ig; single dose) shortenes the escape latency time (ELT), reduced $A\beta_{1-42}$ level,

indicating the improvement in learning and memory ability in A β -induced AD mice model^[1].

Pharmacokinetic Analysis in Balb/C mice^[1]

Tissue	T _{1/2}	T _{max}	C_{max}	AUC _{0-t}	AUC _{brain/plasma}
Plasma	1.15 h	0.5 h	1539 ng/mL	2941 ng·h/mL	0.69
Brain	2.07 h	1.0 h	922.7 ng/g	2032.5 ng∙h/g	

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Cong S, et al. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer's disease. Eur J Med Chem.

2023 Mar 15;250:115216.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com