

Product Data Sheet

Diclofenac diethylamine

Cat. No.: HY-15036A
CAS No.: 78213-16-8
Molecular Formula: $C_{18}H_{22}Cl_2N_2O_2$

Molecular Weight: 369.29

Target: COX; Apoptosis

Pathway: Immunology/Inflammation; Apoptosis

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 150 mg/mL (406.18 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.7079 mL	13.5395 mL	27.0790 mL
	5 mM	0.5416 mL	2.7079 mL	5.4158 mL
	10 mM	0.2708 mL	1.3539 mL	2.7079 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.77 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.77 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.77 mM); Clear solution

BIOLOGICAL ACTIVITY

Diclofenac diethylamine is a potent and nonselective anti-inflammatory agent, acts as a COX inhibitor, with IC₅₀s of 4 and 1.3 nM for human COX-1 and COX-2 in CHO cells^[1], and 5.1 and 0.84 µM for ovine COX-1 and COX-2, respectively^[2]. Diclofenac diethylamine induces apoptosis of neural stem cells (NSCs) via the activation of the caspase cascade^[3].

In Vitro Diclofenac effectively blocks COX-1 mediated prostanoid production from U937 cell microsomes, with an IC_{50} of 7±3 nM^[1]. Diclofenac (1-60 μ M; 1 day) induces neural stem cells (NSCs)death in a concentration-dependent manner^[3].

Diclofenac (10-60 μM; 6 hours) increases the expression of cleaved (activated) caspase-3^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[3]

Cell Line:	Neural stem cells (NSCs)	
Concentration:	1, 3, 10, 30, 60 μΜ	
Incubation Time:	1 day	
Result:	Induction of cell death was concentration-dependent and the effect was not saturated at a concentration of up to 60 $\mu\text{M}.$	
Western Blot Analysis ^[3]		
Cell Line:	Neural stem cells (NSCs)	

Cell Line:	Neural stem cells (NSCs)	
Concentration:	10, 30 or 60 μM	
Incubation Time:	6 hours	
Result:	The activation of caspase-3 was increased in a concentration-dependent manner.	

In Vivo

Diclofenac (3 mg/kg, b.i.d., for 5 days) significantly increases faecal 51 Cr excretion in rats, and such effect is also observed in squirrel monkeys after administrated of 1 mg/kg twice daily for 4 days $^{[1]}$.

Diclofenac (10 mg/kg; administered via oral route just prior to induction of inflammation) shows in vivo anti-inflammatory activity in Wistar rats $^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Sprague-Dawley rats (150±200 g) ^[1]	
Dosage:	3 mg/kg	
Administration:	Oral administration, b.i.d., for 5 days	
Result:	Resulted in a significant increase in faecal ⁵¹ Cr excretion.	
Animal Model:	Wistar rats (150-175 g) bearing Formalin-induced rat foot paw edema model ^[2]	
Dosage:	10 mg/kg	
Administration:	Administered via oral route just prior to induction of inflammation	
Result:	Showed in vivo anti-inflammatory activity (% edema inhibition=29.2, 1 h; 22.2, 3 h; 20, 6 h).	

CUSTOMER VALIDATION

- J Hazard Mater. 2015 May 30;289:18-27.
- Chemosphere. 2019 Jun;225:378-387.
- Int J Mol Sci. 2022, 23(20), 12066.
- Biotechnol Bioeng. 2021 Sep 3.
- Chem-Biol Interact. 2021, 109425.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Riendeau D, et al. Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol. 1997 May;121(1):105-17.

[2]. Labib MB, et al. Design, synthesis of novel isoindoline hybrids as COX-2 inhibitors: Anti-inflammatory, analgesic activities and docking study. Bioorg Chem. 2018 Oct;80:70-80.

[3]. Chiho Kudo, et al. Diclofenac Inhibits Proliferation and Differentiation of Neural Stem Cells. Biochem Pharmacol. 2003 Jul 15;66(2):289-95.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA