Product Data Sheet

AIM-100

Cat. No.: HY-15290 CAS No.: 873305-35-2 Molecular Formula: $C_{23}H_{21}N_3O_2$

Molecular Weight: 371.43 Ack1 Target:

Pathway: Protein Tyrosine Kinase/RTK

-20°C Storage: Powder 3 years

2 years -80°C In solvent 2 years

> -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (134.61 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.6923 mL	13.4615 mL	26.9230 mL
	5 mM	0.5385 mL	2.6923 mL	5.3846 mL
	10 mM	0.2692 mL	1.3461 mL	2.6923 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.73 mM); Clear solution

BIOLOGICAL ACTIVITY

 $AIM-100 is a potent and selective Ack1 inhibitor with an IC_{50} of 21.58 nM. AIM-100 also inhibits Tyr^{267} phosphorylation. AIM-100 is a potent and selective Ack1 inhibitor with an IC_{50} of 21.58 nM. AIM-100 also inhibits Tyr^{267} phosphorylation. AIM-100 is a potent and selective Ack1 inhibitor with an IC_{50} of 21.58 nM. AIM-100 also inhibits Tyr^{267} phosphorylation. AIM-100 is a potent and selective Ack1 inhibitor with an IC_{50} of 21.58 nM. AIM-100 also inhibits Tyr^{267} phosphorylation. AIM-100 is a potent and selective Ack1 inhibitor with an IC_{50} of 21.58 nM. AIM-100 also inhibits Tyr^{267} phosphorylation. AIM-100 also inhibits Tyr^{267} phosp$ Description 100 does not inhibits other kinases including PI3-kinase and AKT subfamily members. AIM-100 has an anticancer effect [1][2].

IC50: 21.58 nM (Ack1)[2] IC₅₀ & Target

In Vitro AIM-100 (2-10 μM; 48 hours) treatment not only inhibits Ack1 activation but also suppresses AKT tyrosine phosphorylation, leading to cell cycle arrest in the G1 phase. AIM-100 not only inhibits Ack1/AKT Tyr-phosphorylation but also suppressed

	growth of cell lines derived from pancreatic, breast, and lung tumors ^[1] . The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr ²⁶⁷ phosphorylation and its recruitment to the ataxia-telangiectasia mutated kinase (ATM) enhancer ^[2] . AIM-100 is able to suppress pTyr ²⁶⁷ -AR phosphorylation, binding of androgen receptor (AR) to PSA, NKX3.1, and TMPRSS2 promoters, and inhibit AR transcription activity ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	In male nude castrated mice, AIM-100 (4 mg/kg) suppresses growth of radioresistant castration-resistant prostate cancer (CRPC) xenograft tumors by decreasing ataxia-telangiectasia mutated kinase (ATM) expression ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Mol Med. 2023 Jan 16;29(1):6.
- Cell Biochem Funct. 2020 Jul;38(5):642-650.
- Oncotarget. 2015 Dec 1;6(38):40622-41.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

- [1]. Mahajan K, et al. Ack1 tyrosine kinase activation correlates with pancreatic cancer progression. Am J Pathol. 2012 Apr;180(4):1386-93.
- [2]. Mahajan K, et al. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem. 2012 Jun 22;287(26):22112-22.
- [3]. Mahajan K, et al. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate. 2010 Sep 1;70(12):1274-85.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA