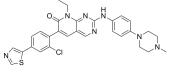
Proteins

Inhibitors

FRAX597

Cat. No.: HY-15542A CAS No.: 1286739-19-2 Molecular Formula: $C_{29}H_{28}CIN_{7}OS$

Molecular Weight: 558.1 PAK Target:


Pathway: Cell Cycle/DNA Damage; Cytoskeleton

-20°C Storage: Powder 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 14.29 mg/mL (25.60 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.7918 mL	8.9590 mL	17.9179 mL
	5 mM	0.3584 mL	1.7918 mL	3.5836 mL
	10 mM	0.1792 mL	0.8959 mL	1.7918 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: 1.43 mg/mL (2.56 mM); Suspended solution; Need ultrasonic
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 1.43 mg/mL (2.56 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.43 mg/mL (2.56 mM); Clear solution

BIOLOGICAL ACTIVITY

Description FRAX597 is a potent group I p21-activated Kinases (PAKs) inhibitor with IC $_{50}$ of 8, 13 and 19 nM for PAK1, 2 and 3.

PAK1 PAK2 PAK3 IC₅₀ & Target 8 nM (IC₅₀) 19 nM (IC₅₀) 13 nM (IC₅₀)

In Vitro

FRAX597 is determined to be a potent, ATP-competitive inhibitor of group I PAKs (PAK 1-3), with biochemical IC₅₀ values as follows: PAK1 IC₅₀=8 nM, PAK2 IC₅₀=13 nM, PAK3 IC₅₀=19 nM. The IC₅₀ toward PAK4, a member of group II PAKs is >10 μ M. At a concentration of 100 nM FRAX597 displays a significant (>80% inhibition) inhibitory capacity toward YES1 (87%), RET (82%), CSF1R (91%), TEK (87%), PAK1 (82%), and PAK2 (93%). When measured using the Kinase Glo Assay in the presence of 20 nM protein and 1 μ M ATP, FRAX597 displayed an IC₅₀ value of 48 nM against wild type PAK1, while IC₅₀ values against the V342F and V342Y PAK1 mutants are higher than 3 μ M and 2 μ M, respectively^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Analysis of the flux reading for the animals in the two cohorts demonstrates a significantly slower tumor growth rate in FRAX597-treated mice compared with control mice. After 14 days of treatment the animals are sacrificed and the tumors excised and weighed. FRAX597-treated cohort shows significantly lower average tumor weight compared with the control cohort [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

30,000 SC4 cells/well are plated in 12-well dishes in triplicate. Cell growth media with or without FRAX597 (1 μ M) is replaced daily. At indicated time points, cells from individual wells are trypsinized and counted using a Coulter counter. Statistical analysis is performed using a Student's t test. For cell cycle analysis, cells are harvested, washed once with PBS and fixed in cold 70% ethanol. Fixed cells are resuspended in propidium iodide (PI) buffer (50 μ g/mL PI, 250 mg/mL RNase A in PBS) and incubated overnight at 4°C in the dark. Cell cycle distribution is evaluated using Coulter Epics XL flow cytometer. Data are analyzed using WinMDI software^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]

Mice^[1]

Nf2^{-/-} SC4 Schwann cells are transduced by lentiviruses carrying pLuc-mCherry and sorted by FACS. 5×10⁴ cells are transplanted into the sciatic nerve sheath of NOD/SCID mice (8 weeks of age) by intraneural injection. Tumor progression is monitored weekly by bioluminescence imaging (BLI) on an IVIS-200 system. The representative images from bioluminescence imaging (BLI) of mice carrying orthotopic tumors treated with FRAX597 (100 mg/kg) or vehicle control at day 14 of treatment. NOD/SCID mice are injected intraneurally with 5×10⁴ SC4/pLuc-mCherry cells and are enrolled into treatment after 10 days. Mice are treated daily for 14 days and imaged every 3 days to follow tumor development. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Acta Pharm Sin B. 2020 Apr;10(4):603-614.
- Br J Cancer. 2022 Nov 1.
- Antioxid Redox Signal. 2020 Aug 7.
- · Harvard Medical School LINCS LIBRARY

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Licciulli S, et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem. 2013 Oct 4;288(40):29105-14.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com