

Product Data Sheet

APD668

Cat. No.: HY-15565 CAS No.: 832714-46-2 Molecular Formula: $C_{21}H_{24}FN_5O_5S$ Molecular Weight: 477.51

Target: GPR119; Cytochrome P450; Potassium Channel

Pathway: GPCR/G Protein; Neuronal Signaling; Metabolic Enzyme/Protease; Membrane

Transporter/Ion Channel

Storage: Powder -20°C 3 years

4°C 2 years

In solvent -80°C 2 years -20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO: 33.33 mg/mL (69.80 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0942 mL	10.4710 mL	20.9420 mL
	5 mM	0.4188 mL	2.0942 mL	4.1884 mL
	10 mM	0.2094 mL	1.0471 mL	2.0942 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo 1. Add each solvent one by one: 10% DMSO >> 90% corn oil

Solubility: \geq 2.5 mg/mL (5.24 mM); Clear solution

2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)

Solubility: ≥ 2.08 mg/mL (4.36 mM); Clear solution

BIOLOGICAL ACTIVITY

APD668 is a potent, selective and orally active agonist of G-protein coupled receptor GPR119, with EC₅₀s of 2.7 nM and 33 nM for hGPR119 and rGPR119, respectively. APD668 shows no significant inhibition of any of the five major CYP isoforms with

the exception of CYP2C9 (K_i =0.1 μ M). APD668 can be used for the research of steatohepatitis and diabetes [1][2].

 IC50 & Target
 hGPR119
 rGPR119
 CYP2C9
 hERG channel

 2.7 nM (IC50)
 33 nM (IC50)
 0.1 μM (Ki)
 3 μM (IC50)

In Vitro APD668 increases adenylate cyclase activation in HEK293 cells transfected with human GPR119 in a concentration-

dependent manner with an EC_{50} of 23 $nM^{[1]}$.

APD668 is highly bound to plasma proteins of male and female cynomolgus monkeys and humans ($\boxtimes 99\%$), but is less extensively bound to male (93.0%) and female (96.6%) rats^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

APD668 (10-30 mg/kg; p.o. once daily for 8 weeks) significantly reduces blood glucose and glycated hemoglobin (HbA1c) levels, with no desensitization of the acute drug response^[1].

APD668 (1-10 mg/kg; a single p.o.) markedly reduces blood glucose levels during oral glucose tolerance test in a dose-dependent manner in mice $^{[1]}$.

APD668 (0.08 mg/kg/min; i.v.) shows no effect during euglycemic condition, but significantly stimulates insulin release when blood glucose levels are raised to approximately 300 mg/dl in a hyperglycemic clamp model in the Sprague-Dawley $rat^{[1]}$. APD668 (p.o.) exhibits rapid to moderate absorption ($t_{max} \le 2$ h) in mice, rats, and monkeys, but slower in dogs ($t_{max} = 6$ h), and moderate to good absolute oral bioavailability (44-79%) in mice, rats, and monkeys, but lower in dogs ($t_{max} = 6$ h).

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Zucker Diabetic Fatty (ZDF) rats (6 weeks old, 200-250 g) ^[1]	
Dosage:	10, 30 mg/kg	
Administration:	P.o. once daily for 8 weeks	
Result:	Decreased the blood glucose and HbA1c levels at 30 mg/kg/day. Did not develop diabetes, whereas the vehicle treated rats did.	

CUSTOMER VALIDATION

• Invest Ophthalmol Vis Sci. 2017 Jun 1;58(7):2930-2938.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Semple G, et al. Discovery of fused bicyclic agonists of the orphan G-protein coupled receptor GPR119 with in vivo activity in rodent models of glucose control. Bioorg Med Chem Lett. 2011 May 15;21(10):3134-41.

[2]. Bahirat UA, et, al. APD668, a G protein-coupled receptor 119 agonist improves fat tolerance and attenuates fatty liver in high-trans fat diet induced steatohepatitis model in C57BL/6 mice. Eur J Pharmacol. 2017 Apr 15;801:35-45.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA