TRITC-dextran, MW 70000

MedChemExpress

at. No.:	HY-158082C				
Iolecular Weight:	70000				
rget:	Fluorescent Dye				
athway:	Others			TR	ITC-dextran,
Storage:	Powder	-20°C	3 years		
		4°C	2 years		
	In solvent	-80°C	6 months		
		-20°C	1 month		

SOLVENT & SOLUBILITY	

In	Vitro	

H₂O: 50 mg/mL (0.71 mM; Need ultrasonic)

BIOLOGICAL ACTIVITY

Description	TRITC-dextran, MW 70000 (Tetramethyl rhodamine isothiocyanate glucan, MW 70000) is a fluorescent dye, with the
	molecular weight of 70 kD. TRITC-dextran, MW 70000 exhibits an excitation wavelength of 555 nm. TRITC-dextran, MW 70000
	is utilized in drug delivery for the stability of TRITC over a wide pH range (i.e. pH 2–11) and resistance to photo-bleaching ^[1] ^{[2][3]} .

REFERENCES

[1]. Tran NBNN, et al., Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin. Eur J Pharm Biopharm. 2017 Jul;116:12-16.

[2]. Kawoos U, et al., N-acetylcysteine Amide Ameliorates Blast-Induced Changes in Blood-Brain Barrier Integrity in Rats. Front Neurol. 2019 Jun 26;10:650.

[3]. Somaratne G, et al., In-situ disintegration of egg white gels by pepsin and kinetics of nutrient release followed by time-lapse confocal microscopy[J]. Food hydrocolloids, 2020, 98: 105228.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Product Data Sheet