Balaglitazone

®

MedChemExpress

Cat. No.:	HY-16086		
CAS No.:	199113-98-9		
Molecular Formula:	$C_{20}H_{17}N_{3}O_{4}S$		S S
Molecular Weight:	395.43		N O NH
Target:	PPAR		Ń,
Pathway:	Cell Cycle/DNA Dar Receptor	nage; Metabolic Enzyme/Protease; Vitamin D Related/Nuclear	0
Storage:	Powder -20°C	3 years	
	4°C	2 years	
	In solvent -80°C	2 years	
	-20°C	1 year	

SOLVENT & SOLUBILITY

In Vitro	DMSO : 100 mg/mL (252.89 mM; Need ultrasonic)					
	Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg	
		1 mM	2.5289 mL	12.6445 mL	25.2889 mL	
		5 mM	0.5058 mL	2.5289 mL	5.0578 mL	
		10 mM	0.2529 mL	1.2644 mL	2.5289 mL	
	Please refer to the so	lubility information to select the ap	propriate solvent.			
In Vivo	1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.32 mM); Clear solution					
	2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (6.32 mM); Clear solution					
	 Add each solvent of Solubility: ≥ 2.5 m 	one by one: 10% DMSO >> 90% cor g/mL (6.32 mM); Clear solution	m oil			

BIOLOGICALACTIVITY				
Description	Balaglitazone is a selective partial PPARy agonist with an EC $_{\rm 50}$ of 1.351 μM for human PPARy.			
IC ₅₀ & Target	PPARγ 351 nM (EC50, Human PPARγ)			
In Vitro	Balaglitazone is a selective partial PPAR γ agonist with an EC ₅₀ of 1.351 μ M ^[1] . Balaglitazone (5-100 μ M) has equal cytotoxicity			

Product Data Sheet

	towards K562 and K562/DOX cells. Balaglitazone decreases doxorubicin cytotoxicity in K562 and K562/DOX cells, with IC ₅₀ s of 0.117 μM and 0.53 μM, respectively. Balaglitazone reverses multidrug resistance (MDR) in K562/DOX cells. Balaglitazone (25 μM) increases Rh123 accumulation in K562/DOX cells, but does not increases MFI in K562 cells. Balaglitazone downregulates P-gp expression in K562/DOX cells, and such effects are via upregulation of PTEN in K562/DOX cells, and be abolished by PTEN inhibition ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Balaglitazone (3 mg/kg, p.o.) shows antihyperglycaemic activity in fully diabetic and insulin resistant db/db mice, and is more potent than the full PPARγ agonist rosiglitazone ^[1] . Balaglitazone (10 mg/kg, p.o.) suppresses overall glucose, decreases insulin levels, and increases bodyweight in male diet-induced obese rats, and such effects are equal to that of 30 mg/kg pioglitazone ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay ^[2]	MTT assay is used for cell viability analyses. Briefly, K562 and K562/DOX cells are seeded in a 96-well plate in RPMI-1640 medium supplemented with 10% FBS at the density of 2×10^4 cells/well. After 24 h incubation, various concentrations of doxorubicin (DOX) with or without balaglitazone are diluted in RPMI-1640 medium (without FBS) and added into each well. Experiments for each group are performed in triplicates and with a blank control. After 48 h of treatment, the medium is removed and 200 µL of RPMI-1640 medium supplemented with 10% FBS and 10% MTT (5 mg/mL) is added. After incubation for another 4 h, the reduced intracellular formazan product is dissolved by replacing 100 µL of RPMI-1640 medium with the same volume of dimethyl sulfoxide (DMSO). Absorbance values are measured at 570 nm with a micro plate reader. The half maximal inhibitory concentration (IC ₅₀) of each experiment is calculated. The resistance fold (RF) is calculated by dividing the IC ₅₀ value of treatment in resistant cells by the IC ₅₀ value of treatment in corresponding parental cells ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal Administration ^[1]	Antihyperglycaemic effects of balaglitazone and rosiglitazone are assessed in adult male diabetic db/db mice. At 14 weeks of age, animals are randomised according to fasting blood glucose into 11 groups (n = 6). Mice are dosed orally once daily for 9 days with vehicle (0.2% carboxymethyl cellulose (CMC) + 0.4% Tween-80 in saline) or increasing doses of either balaglitazone (0.1; 0.3; 1.0; 3.0; 10.0 mg/kg/day) or rosiglitazone (0.2; 0.6; 2.0; 6.0 mg/kg/day). After 7 days of treatment, plasma samples obtained in the morning (between 8:00 and 10:00 AM) are analysed for glucose and insulin. After 9 days of treatment, animals are exposed to an oral glucose tolerance test (OGTT; 3.0 g/kg). The resulting area under the curve is calculated for each of the doses ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

• Front Microbiol. 2019 Jan 8;9:3257.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. Larsen PJ, et al. Dissociation of antihyperglycaemic and adverse effects of partial perioxisome proliferator-activated receptor (PPAR-gamma) agonist balaglitazone. Eur J Pharmacol. 2008 Oct 31;596(1-3):173-9.

[2]. Yousefi B, et al. Balaglitazone reverses P-glycoprotein-mediated multidrug resistance via upregulation of PTEN in a PPARy-dependent manner in leukemia cells. Tumour Biol. 2017 Oct;39(10):1010428317716501. [3]. Henriksen K, et al. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats. Eur J Pharmacol. 2009 Aug 15;616(1-3):340-5.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA