NB-598 hydrochloride

Cat. No.:	HY-16343A	
CAS No.:	136719-25-0	
Molecular Formula:	C ₂₇ H ₃₂ CINOS ₂	
Molecular Weight:	486.13	
Target:	Others	S H-CI
Pathway:	Others	
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	

Description	NB-598 hydrochloride is a potent and competitive inhibitor of squalene epoxidase (SE), and suppresses triglyceride biosynthesis through the farnesol pathway. NB-598 (hydrochloride) is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.	
IC ₅₀ & Target	squalene epoxidase	
In Vitro	NB598 (10 μM) causes a 36±7% reduction in total cholesterol level of MIN6 cells. NB598 causes a significant decrease in cholesterol by 49±2%, 46±7%, and 48±2% from PM, ER, and SG, respectively. NB598 dose-dependently inhibits insulin secretion under both basal (1 mM glucose) and glucose-stimulated (16.7 mM glucose) conditions. NB598 at concentrations up to 10 μM does not affect peak outward KV currents or the voltage dependence of activation but increases current inactivation ^[1] . NB-598 (10 μM) inhibits the synthesis of sterol and sterol ester from [¹⁴ C]acetate without affecting the synthesis of other lipids such as phospholipids (PL), free fatty acids (FFA) and triacylglycerol (TG). In the absence of exogenous liposomal cholesterol, NB-598 reduces ACAT activity by 31%. NB-598 reduces ACAT activity by 22% even in the presence of a 600 PM concentration of liposomal cholesterol ^[2] . NB-598 suppresses the secretion of cholesterol and triacylglycerol from HepG2 cells into the medium ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	

Kinase Assay ^[2]	Caco-2 cells are grown in a 58 cm ² plastic dish with medium A for 13 days. The cells are washed with medium B, and then
	cultured with medium B including cholesterol-micelle and each compound. The compound is dissolved in Me ₂ SO, and the
	final concentration of Me_2SO is 0.1%(v/v). After 18 hr of incubation, the cells are washed extensively with phosphate-
	buffered saline (PBS) to remove the compound. Microsomes are prepared as described above. The reaction mixture (0.2 mL)
	consisted of 0.1 mg microsomes, 0.25% BSA and 40 PM [14 C]oleoyl CoA in buffer A. To avoid the effects of endogenous
	cholesterol, liposome (2 mol of cholesterol: 1 mol of phosphatidylcholine) [15] is added to the reaction mixture. The
	microsomes are preincubated for 1 hr with or without exogenous cholesterol, and ACAT activity is determined as described
	above.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Product Data Sheet

PROTOCOL

CUSTOMER VALIDATION

- Cell Metab. 2020 Apr 7;31(4):862-877.e14.
- Nat Chem Biol. 2016 Jul;12(7):497-503.
- Genome Biol. 2016 Jun 29;17(1):140.
- Sci China Life Sci. 2021 May 27;1-21.
- Cell Death Dis. 2021 May 13;12(5):482.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Xia F, et al. Inhibition of cholesterol biosynthesis impairs insulin secretion and voltage-gated calcium channel function in pancreatic beta-cells. Endocrinology. 2008 Oct;149(10):5136-45.

[2]. Horie M, et al. Effects of NB-598, a potent squalene epoxidase inhibitor, on the apical membrane uptake of cholesterol and basolateral membrane secretion of lipids in Caco-2 cells. Biochem Pharmacol. 1993 Jul 20;46(2):297-305.

[3]. Horie M, et al. An inhibitor of squalene epoxidase, NB-598, suppresses the secretion of cholesterol and triacylglycerol and simultaneously reduces apolipoprotein B in HepG2 cells. Biochim Biophys Acta. 1993 May 20;1168(1):45-51.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA