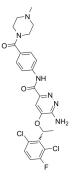
# X-376

Cat. No.: HY-16590 CAS No.: 1365267-27-1 Molecular Formula:  $C_{25}H_{25}Cl_{2}FN_{6}O_{3}$ 

Molecular Weight: 547.41


Target: Anaplastic lymphoma kinase (ALK); c-Met/HGFR

Pathway: Protein Tyrosine Kinase/RTK Storage: Powder -20°C 3 years

4°C 2 years

-80°C In solvent 2 years

> -20°C 1 year



**Product** Data Sheet

# **SOLVENT & SOLUBILITY**

In Vitro

DMSO: 100 mg/mL (182.68 mM; Need ultrasonic)

| Preparing<br>Stock Solutions | Solvent Mass<br>Concentration | 1 mg      | 5 mg      | 10 mg      |
|------------------------------|-------------------------------|-----------|-----------|------------|
|                              | 1 mM                          | 1.8268 mL | 9.1339 mL | 18.2678 mL |
|                              | 5 mM                          | 0.3654 mL | 1.8268 mL | 3.6536 mL  |
|                              | 10 mM                         | 0.1827 mL | 0.9134 mL | 1.8268 mL  |

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (4.57 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (4.57 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (4.57 mM); Clear solution

# **BIOLOGICAL ACTIVITY**

Description X-376 is a potent and highly specific ALK tyrosine kinase inhibitor (TKI) (IC<sub>50</sub>=0.61 nM). X-376 is a less potent inhibitor of MET ( $IC_{50}$ =0.69 nM). X-376 displays potent anti-tumor activity<sup>[1]</sup>.

0.61 nM (IC<sub>50</sub>)

ALK

In Vitro The ability of X-376 to inhibit the growth of different cancer cell lines harboring ALK fusions or point mutations is tested. X-

IC<sub>50</sub> & Target

376 is potent in H3122 lung cancer cells harboring EML4-ALK E13;A20 (IC $_{50}$ : 77 nM). X-376 is also potent in H2228 lung cancer cells harboring EML4-ALK E6a/b; A20 (IC $_{50}$ : 57 nM). Furthermore, X-376 is potent in SUDHL-1 lymphoma cells harboring NPM-ALK (IC $_{50}$ : 32 nM). X-376 also inhibits SY5Y neuroblastoma cells harboring ALK F1174L, MKN-45 gastric carcinoma cells harboring MET dependent, HepG2 cells and PC-9 lung cancer cell lines harboring EGFR exon 19 del with IC $_{50}$ s of 142 nM, 150 nM, 15.137  $\mu$ M and 3.062  $\mu$ M, respectively<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### In Vivo

The effects of X-376 in vivo against H3122 xenografts are examined. A pharmacokinetic study reveals that X-376 shows substantial bioavailability and moderate half-lives in vivo. Nude mice harboring H3122 xenografts are treated with X-376 at 50 mg/kg bid. X-376 significantly delays the growth of tumors compared to vehicle alone. In the xenograft experiments, X-376 appears well-tolerated in vivo. Mouse weight is unaffected by X-376 treatment. Drug-treated mice appear healthy and do not display any signs of compound related toxicity. To further assess potential side effects of X-376, additional systemic toxicity and toxico-kinetic studies are performed in Sprague Dawley (SD) rats. Following 10 days of repeated oral administration of X-376 at 25, 50, 100 mg/kg in SD rats, all animals survive to study termination. The no significant toxicity (NST) levels are determined to be 50 mg/kg for X-376. At NST levels, X-376 achieves an AUC of 41  $\mu$ M×hr and a C<sub>max</sub> of 5.04  $\mu$ M<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

#### **PROTOCOL**

## Cell Assay [1]

For viability experiments, cells are seeded in 96-well plates at 25%-33% confluency and exposed to drugs. The human lung adenocarcinoma cell lines H3122 and H2228 are treated with X-376 (10, 30, 100, 300 and 1000 nM). SUDHL-1 lymphoma cells are treated with X-376 (5, 10, 30, 100 and 300 nM). SY5Y neuroblastoma cells are treated with X-376 (30, 100, 300 and 1000 nM). At 72 hours post X-376 addition, Cell Titer Blue Reagent is added and fluorescence is measured on a Spectramax spectrophotometer. All experimental points are set up in hextuplicate replicates and are performed at least two independent times.  $IC_{50}$ s are calculated using GraphPad Prism version 5 for Windows. The curves are fit using a nonlinear regression model with a log (inhibitor) vs. response formula<sup>[1]</sup>.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

# Animal Administration [1]

## Mice<sup>[1]</sup>

Nude mice (*nu/nu*) are injected with H3122 cells. Once tumors reach an average volume of 450 mm<sup>3</sup>, a total of 27 athymic mice harboring H3122 tumors are randomized and dosed via oral gavage with 50 mg/kg X-376 or the control vehicle. Two, five, and fifteen hours after the single treatment (3 tumors/timepoint/group), mice are sacrificed and serum is collected for assessment of drug concentration using an LC-MS based bioanalytical method.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

# **CUSTOMER VALIDATION**

• RSC Adv. 2020, 10(9):5412-5427.

See more customer validations on www.MedChemExpress.com

### **REFERENCES**

[1]. Lovly CM, et al. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinaseinhibitors. Cancer Res. 2011 Jul 15;71(14):4920-31.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$ 

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com