Proteins

ICA-121431

Cat. No.: HY-16787 CAS No.: 313254-51-2 Molecular Formula: $C_{23}H_{19}N_3O_3S_2$ Molecular Weight: 449.55

Target: Sodium Channel

Pathway: Membrane Transporter/Ion Channel

Storage: Powder

> 4°C 2 years

3 years

-80°C In solvent 2 years

-20°C

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO : ≥ 44 mg/mL (97.88 mM)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2244 mL	11.1222 mL	22.2445 mL
	5 mM	0.4449 mL	2.2244 mL	4.4489 mL
	10 mM	0.2224 mL	1.1122 mL	2.2244 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.56 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (5.56 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.56 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

ICA-121431 is a nanomolar potent and broad-spectrum voltage-gated sodium channel (Na_v) blocker, shows equipotent selectivity for human Na $_{\rm V}$ 1.1 and Na $_{\rm V}$ 1.3 subtypes with IC $_{50}$ values of 13 nM and 23 nM, respectively. ICA-121431 shows less potent inhibition of Na_V1.2 (IC $_{50}$ =240 nM) and 1,000 fold selectivity against Na_V1.4, Na_V1.6, and the TTX-resistant human Na_V 1.4, Na_V1.6, Na 1.5 and Na_V1.8 channels (IC₅₀s >10 μ M).

IC₅₀ & Target hNa_v1.1 hNa_v1.3 hNa_v1.4 hNa_v1.6

Page 1 of 2

13 nM (IC ₅₀)	23 nM (IC ₅₀)	240 nM (IC ₅₀)	>10 μM (IC ₅₀)
hNa _V 1.5 >10 μM (IC ₅₀)	hNa $_{ m V}$ 1.8 >10 μ M (IC $_{ m 50}$)		

In Vitro

ICA-121431 interacts with human $Na_v1.3$ and the amino acid residues that may define selectivity for this channel over other related Na_v channels, including $Na_v1.7$ and $Na_v1.5$. Data generated using conventional patch clamp electrophysiological recording using a pulse protocol whereby a 20-ms test pulse is preceded by an 8-s step to a voltage that inactivated half of the channels^[1].

ICA-121431 is against Wild type hNa $_{v}$ 1.3 hNa $_{v}$ 1.5 hNa $_{v}$ 1.7 with IC $_{50}$ s of 0.013 μ M, >30 μ M, 12 μ M, respectively [1]. ICA-121431 is against hNa $_{v}$ channels with point mutations, shows hNa $_{v}$ 1.3 M1 (S1510Y), hNa $_{v}$ 1.3 M2 (R1511W), hNa $_{v}$ 1.3 M3 (E1559D), hNa $_{v}$ 1.3 M1,3 (S1510Y/E1559D), hNa $_{v}$ 1.3 M2,3 (R1511W/E1559D), hNa $_{v}$ 1.3 M1, 2,3 (S1510Y/R1511W/E1559D), and hNa $_{v}$ 1.7 M1, 2,3 (Y1537S/W1538R/D1586E) with IC $_{50}$ values of 0.1 μ M, 0.37 μ M, 1.1 μ M, 1.3 μ M, 1.9 μ M, 11.6 μ M, 0.032 μ M, respectively [1].

ICA-121431 is against hNa $_{\rm V}$ channels with point mutations, shows hNa $_{\rm V}$ 1.3/hNa $_{\rm V}$ 1.5 S1-S4, hNa $_{\rm V}$ 1.3/hNa $_{\rm V}$ 1.5 S3-S4, hNa $_{\rm V}$ 1.3/hNa $_{\rm V}$ 1.7 S1, hNa $_{\rm V}$ 1.7 S2, hNa $_{\rm V}$ 1.3/hNa $_{\rm V}$ 1.7 S3-S4, and hNa $_{\rm V}$ 1.3/hNa $_{\rm V}$ 1.7 S5-S6 with IC50 values of 0.083 μ M, 1.2 μ M, 11 μ M, 2.0 μ M, 0.045 μ M, 0.030 μ M, 0.30 μ M, 1.0 μ M, and 0.024 μ M, respectively [1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Acta Biomater. 2022 Aug 27;S1742-7061(22)00527-X.
- iScience. 2019 Sep 27;19:623-633.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. McCormack K, et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2724-32.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA