Screening Libraries

Product Data Sheet

Metoprolol tartrate

Cat. No.: HY-17503B CAS No.: 56392-17-7 Molecular Formula: C₁₉H₃₁NO₉

Molecular Weight: 342.41

Target: Adrenergic Receptor; Apoptosis

Pathway: GPCR/G Protein; Neuronal Signaling; Apoptosis

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

BIOLOGICAL ACTIVITY

Description $Metoprolol\ tartrate\ is\ an\ orally\ active,\ selective\ \beta 1-adrenoceptor\ antagonist.\ Metoprolol\ tartrate\ shows\ anti-inflammation,$ antitumor and anti-angiogenic properties^{[1][2][3]}.

IC₅₀ & Target β1 adrenoceptor

In Vitro Metoprolol (0-1000 µg/mL; 24-72 h) shows cytotoxic effect on U937 and MOLT-4 cells dose and time dependently^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cytotoxicity Assay^[3]

Cell Line:	U937 and MOLT-4 cells
Concentration:	1, 10, 50, 100, 500 and 1000 μg/mL
Incubation Time:	24, 48 and 72 h
Result:	Significantly decreased the viability of U937 and MOLT-4 cells at 1000 μ g/mL (3740.14 μ M) concentration after 48 hours incubation time, significantly reduced the viability of U937 cells at \geq 500 μ g/ml (\geq 1870.07 μ M) concentrations after 72 hours incubation time, and significantly decreased the viability of MOLT4 cells at \geq 100 μ g/ml (\geq 374.01 μ M) concentrations after 72 hours incubation.

In Vivo

 $Metoprolol~(2.5~mg/kg/h; infusion; 11~weeks)~reduces~proinflammatory~cytokines~and~atherosclerosis~in~ApoE^{-/-}~Mice^{[1]}.$ Metoprolol (15 mg/kg/q12h; i.g.; 5 days) shows anti-inflammation and anti-virus effects in murine model with coxsackievirus B3-induced viral myocarditis^[2].

Metoprolol (2.5 mg/kg; i.v.; 3 bolus injections) significantly decreased activated caspase-9 protein expression and inhibits myocardial apoptosis in coronary microembolization (CME) rats $^{[4]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male ApoE ^{-/-} mice ^[1]
Dosage:	2.5 mg/kg/h
Administration:	Via osmotic minipumps, 11 weeks

Result:	Significantly reduced atherosclerotic plaque area in thoracic aorta, reduced serum TNF α and the chemokine CXCL1 as well as decreasing the macrophage content in the plaques.
Animal Model:	Balb/c mice, coxsackievirus B3 (CVB3) induced viral myocarditis (VMC) model ^[2]
Dosage:	15 mg/kg/q12h
Administration:	Oral gavage, 5 consecutive days
Result:	Reduced pathological scores of VMC induced by CVB3 infection, protected the myocardium against viral damage by reducing serum cTn-I levels. Decreased the levels of myocardial pro-inflammatory cytokines and increase the expression of anti-inflammatory cytokine. Significantly decreased myocardial virus titers.

CUSTOMER VALIDATION

- Chemosphere. 2019 Jun;225:378-387.
- J Pharmaceut Biomed. 2020, 113870.
- J Pharmacol Sci. 2020 Sep;144(1):30-42.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Ulleryd MA, et al. Metoprolol reduces proinflammatory cytokines and atherosclerosis in ApoE-/- mice. Biomed Res Int. 2014;2014:548783.
- [2]. Wang D, et al. Carvedilol has stronger anti-inflammation and anti-virus effects than metoprolol in murine model with coxsackievirus B3-induced viral myocarditis. Gene. 2014 Sep 1;547(2):195-201.
- [3]. Hajatbeigi B, et al. Cytotoxicity of Metoprolol on Leukemic Cells in Vitro. IJBC 2018; 10(4): 124-129.
- [4]. Su Q, et al. Effect of metoprolol on myocardial apoptosis and caspase-9 activation after coronary microembolization in rats. Exp Clin Cardiol. 2013 Spring;18(2):161-5.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA