Proteins

GNE-7915

Cat. No.: HY-18163 CAS No.: 1351761-44-8 Molecular Formula: $C_{19}H_{21}F_{4}N_{5}O_{3}$

Molecular Weight: 443 Target: LRRK2 Pathway: Autophagy

Storage: Powder -20°C 3 years

2 years

In solvent -80°C 2 years

> -20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (225.73 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.2573 mL	11.2867 mL	22.5734 mL
	5 mM	0.4515 mL	2.2573 mL	4.5147 mL
	10 mM	0.2257 mL	1.1287 mL	2.2573 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.64 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (5.64 mM); Suspended solution; Need ultrasonic
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.64 mM); Clear solution
- 4. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (5.64 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	GNE-7915 is a potent, selective and brain-penetrant inhibitor of LRRK2 with an IC ₅₀ of 9 nM.		
IC ₅₀ & Target	IC50: 9 nM ^[1] (LRRK2)		
In Vitro	Maintaining the methoxy/fluoro arrangement at C-2'/C-5' and varying aminoalkyl R1 substitution resultes in single-digit		

nanomolar LRRK2 cellular activities for GNE-7915 and compound 19. Expanded Invitrogen kinase profiling (187 kinases) at 0.1 μ M for both GNE-7915 (100-fold over LRRK2 Ki) and 19 (250-fold over LRRK2 Ki) resultes in only TTK showing greater than 50% inhibition. Selectivity profiling using the DiscoverX KinomeScan55 competitive binding assay panel, which includes 392 unique kinases, is also performed for GNE-7915 at 0.1 μ M. Binding of >50% probe displacement is detected for 10 kinases and of >65% for only LRRK2, TTK, and ALK, further supporting the excellent LRRK2 selectivity for GNE-7915. Cerep receptor profiling, including expanded brain panels, suggestes that GNE-7915 and 19 only inhibite 5-HT $_{2B}$ with >70% inhibition at 10 μ M. GNE-7915 and 19 are confirmed to be moderately potent 5-HT $_{2B}$ antagonists in vitro functional assays $^{[2]}$.

 ${\tt MCE}\ has\ not\ independently\ confirmed\ the\ accuracy\ of\ these\ methods.\ They\ are\ for\ reference\ only.$

CUSTOMER VALIDATION

- Stem Cell Reports. 2022 Sep 12;S2213-6711(22)00423-4.
- Hum Mol Genet. 2017 Jul 15;26(14):2747-2767.
- · bioRxiv. 2020 Apr.
- Programa Oficial de Doctorado en Biomedicina. Universidad de Granada. 5-Jul-2017.
- · Harvard Medical School LINCS LIBRARY

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Kavanagh ME, et al. The development of CNS-active LRRK2 inhibitors using property-directed optimisation. Bioorg Med Chem Lett.?2013 Jul 1;23(13):3690-6.

[2]. Estrada AA, et al. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2012 Nov 26;55(22):9416-33.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA