Proteins

Product Data Sheet

Emixustat

Cat. No.: HY-19720 CAS No.: 1141777-14-1 Molecular Formula: C₁₆H₂₅NO₂ Molecular Weight: 263.38 Others Target: Pathway: Others

Storage: Pure form -20°C 3 years

2 years

-80°C 6 months In solvent

> -20°C 1 month

)	
H_2N	OH		

SOLVENT & SOLUBILITY

In Vitro Ethanol: 100 mg/mL (379.68 mM; Need ultrasonic)

DMSO: $\geq 43 \text{ mg/mL} (163.26 \text{ mM})$

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.7968 mL	18.9840 mL	37.9680 mL
	5 mM	0.7594 mL	3.7968 mL	7.5936 mL
	10 mM	0.3797 mL	1.8984 mL	3.7968 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% EtOH >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 3 mg/mL (11.39 mM); Clear solution
- 2. Add each solvent one by one: 10% EtOH >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 3 mg/mL (11.39 mM); Clear solution
- 3. Add each solvent one by one: 10% EtOH >> 90% corn oil Solubility: ≥ 3 mg/mL (11.39 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Emixustat, a novel visual cycle modulator, is an inhibitor of the visual cycle isomerase with an IC ₅₀ value of 4.4 nM in vitro.
IC ₅₀ & Target	IC50: 4.4 nM (visual cycle isomerase) ^[1]
In Vitro	$Emixust at potently inhibits isomerase activity in vitro (IC_{50}=4.4 \ nM). Treatment of emixust at shows a concentration$

dependent reduction of 11-cis-ROL production [1]. Emixustat strongly inhibits 11-cis-retinol production with an IC₅₀ value of 232 ± 3 nM^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Emixustat reduces the production of visual chromophore (11-cis retinal) in wild-type mice following a single oral dose (ED $_{50}$ =0.18mg/kg). In albino mice, emixustat is shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg) provids a 50% protective effect against light-induced photoreceptor cell loss, while higher doses (1-3 mg/kg) are nearly 100% effective. In Abca4 $^{-/-}$ mice, chronic (3 month) emixustat treatment markedly reduces lipofuscin autofluorescence and reduces A2E levels by 60% (ED $_{50}$ =0.47 mg/kg). In the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produces a 30% reduction in retinal neovascularization (ED $_{50}$ =0.46mg/kg)[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal
Administration [1]

Mice: Albino (BALB/c) mice are used to assess the effects of emixustat on protection from light damage. Mice are treated with a single dose of emixustat (0.3 mg/kg and 1.0 mg/kg). The effect of emixustat on the accumulation of A2E and lipofuscin autofluorescence is examined in Abca4 $^{-/-}$ mice. Mice are treated with emixustat (3 months daily treatment, 0.3 or 3 mg/kg/day)^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Bavik C, et al. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity. PLoS One. 2015 May 13;10(5):e0124940.

[2]. Kiser PD, et al. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat Chem Biol. 2015 Jun;11(6):409-15.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA