

Product Data Sheet

Trabectedin

Cat. No.: HY-50936 CAS No.: 114899-77-3 Molecular Formula: $C_{39}H_{43}N_3O_{11}S$

Molecular Weight: 761.84

Target: Apoptosis; Reactive Oxygen Species

Pathway: Apoptosis; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-кВ

Storage: -20°C, protect from light, stored under nitrogen

* The compound is unstable in solutions, freshly prepared is recommended.

SOLVENT & SOLUBILITY

In Vitro

DMSO: 33.33 mg/mL (43.75 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3126 mL	6.5631 mL	13.1261 mL
	5 mM	0.2625 mL	1.3126 mL	2.6252 mL
	10 mM	0.1313 mL	0.6563 mL	1.3126 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution
- 3. Add each solvent one by one: 5% DMSO >> 40% PEG300 >> 5% Tween-80 >> 50% saline Solubility: ≥ 2.5 mg/mL (3.28 mM); Clear solution

BIOLOGICAL ACTIVITY

Trabectedin (Ecteinascidin 743; ET-743) is a tetrahydroisoquinoline alkaloid with potent antitumor activity. Trabectedin binds to the minor groove of DNA, blocks transcription of stress-induced proteins, induces DNA backbone cleavage and cancer cells apoptosis, and increases the generation of ROS in MCF-7 and MDA-MB-453 cells. Trabectedin has the potential

for soft tissue sarcoma and ovarian cancer research $^{[1][2][3]}. \label{eq:controlled}$

IC50: 0.1 nM (MX-1 cells), 1.5 nM (MCF7 cells) and 3.7 nM (MCF7/DXR cells)^[1]

Reactive oxygen species (ROS)[2]

Apoptosis^[2]

In Vitro

Trabectedin (ET-743; 10 nM; 24-72 hours; MCF7 cells) treatment results in cell accumulation in late S to G2 phase $^{[1]}$. Trabectedin inhibits cell growth of MX-1, MCF7 and MCF7/DXR cells with IC $_{50}$ values of 0.1 nM, 1.5 nM and 3.7 nM, respectively $^{[1]}$.

Trabectedin induces cytotoxicity and apoptosis in both breast cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL-R2/DR5, FAS/TNFRSF6, TNF RI/TNFRSF1A, and FADD are significantly increased by 2.6-, 3.1-, 1.7-, 11.2- and 4.0-fold by Trabectedin treatment in MCF-7 cells. In MDA-MB-453 cells, the mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, Smac/DIABLO, and Cleaved Caspase-3 expressions are induced by 4.2-, 3.6-, 4.8-, 4.5-, and 4.4-fold, and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL are reduced by 4.8- and 5.2-fold in MDA-MB-453 cells^[2]. In vitro treatment with noncytotoxic concentrations of Trabectedin selectively inhibits the production of CCL2, CXCL8, IL-6, VEGF, and PTX3 by myxoid liposarcoma (MLS) primary tumor cultures and/or cell lines^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Cycle Analysis^[1]

Cell Line:	MCF7 cells	
Concentration:	10 nM	
Incubation Time:	24 hours, 48 hours, 72 hours	
Result:	Led to pronounced S-G2-M accumulation.	

In Vivo

Trabectedin (ET-743; 30-50 μ g/kg; intravenous injection; every three days; female athymic nude mice) treatment increases the antitumor effects in nude mice bearing MX-1 mammary carcinoma xenografts without increasing toxicity^[1]. A xenograft mouse model of human myxoid liposarcoma (MLS) shows marked reduction of CCL2, CXCL8, CD68+ infiltrating macrophages, CD31+ tumor vessels, and partial decrease of PTX3 after Trabectedin treatment^[3]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Female athymic nude mice bearing the nu/nu gene (5-6 weeks old, 18-20 g) injected with MX-1 cells $^{[1]}$	
Dosage:	30 μg/kg, 40 μg/kg, 50 μg/kg	
Administration:	Intravenous injection; every three days	
Result:	Increased the antitumor effects in nude mice bearing MX-1 mammary carcinoma xenografts without increasing toxicity.	

CUSTOMER VALIDATION

- Lab Invest. 2023: 100039.
- · bioRxiv. 2024 Mar 3.
- The Ohio State University. 2023 Oct.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Takahashi N, et al. Sequence-dependent synergistic cytotoxicity of ecteinascidin-743 and NSC 125973 in human breast cancer cell linesin vitro and in vivo. Cancer Res. 2002 Dec 1;62(23):6909-15.

[2]. Germano G, et al. Antitumor	and anti-inflammatory effec	cts of trabectedin on human my	xoid liposarcoma cells. Cancer Res. 201	0 Mar 15;70(6):2235-44.	
[3]. Atmaca H, et al. A diverse induction of apoptosis by trabectedin in MCF-7 (HER2-/ER+) and MDA-MB-453 (HER2+/ER-) breast cancer cells. Toxicol Lett. 2013 Jun 20;221(2):128-136.					
			edical applications. For research u		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExpre outh Junction, NJ 08852, USA	ess.com	
	Address. 1	beer Park Dr., Suite Q., Moiiiii	outil Juliction, NJ 08652, OSA		

Page 3 of 3 www.MedChemExpress.com