Proteins

Inhibitors

D149 Dye

Cat. No.: HY-50938 CAS No.: 786643-20-7 Molecular Formula: $C_{42}H_{35}N_3O_4S_3$ Molecular Weight: 741.94

Target: Fluorescent Dye

Pathway: Others

4°C, protect from light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (protect from light)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 1 mg/mL (1.35 mM; Need ultrasonic)

H₂O: < 0.1 mg/mL (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.3478 mL	6.7391 mL	13.4782 mL
	5 mM			
	10 mM			

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

D149 Dye is an indoline-based dye, which is a high-extinction-coefficient metal-free organic sensitizer.

In Vitro

D149 is a metal-free organic dye, which is promising all-organic alternatives. D149 displays power conversion efficiency of up to 9%. Furthermore, D149 has a peak extinction co-efficient of 68700 M⁻¹ cm⁻¹ at 540 nm, significantly higher than 13900 M⁻¹cm⁻¹ at 535 nm for N719^[1]. D149, a metal-free indoline dye, is one of the most promising sensitizers for dye-sensitized solar cells (DSSCs) and has shown very high solar energy conversion efficiencies of 9%. D149 shows a large number of unresolved aromatic and olefinic signals between 7 and 7.5 ppm^[2]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Cell Assay [1]

The porous TiO₂ films are immersed in a 0.5 mM D149 (1-material) dye solution in a 1:1 (v/v) mixture of acetonitrile (HPLC) and tert-butanol (LR) overnight once their temperature decreased to approximately 110°C. The samples are then taken out of the dye bath, washed with acetonitrile, and dried. The working electrode and Pt counter electrode [produced using a predrilled piece of 2.3 mm FTO glass, coated with one drop of 10 mM platinic acid solution $[H_2PtCl_6]$ and heated to 400°C for 20 min] are assembled into a sandwich type cell and sealed with a spacer of 25 μ m Surlyn. An I^{-1}/I_3^{-1} organic solvent based electrolyte solution [50 mM iodine, 0.6 M 1,2-dimethyl-3-propylimidazelium iodide, 0.1 M lithium iodide in methoxypropionitrile] is introduced via vacuum back-filling. The hole is sealed with a piece of aluminium foil-backed Surlyn [1]

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Lin J, et al. 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep. 2014 Aug 29;4:5769.

[2]. El-Zohry A, et al. Isomerization and Aggregation of the Solar Cell Dye D149. J Phys Chem C Nanomater Interfaces. 2012 Dec 20;116(50):26144-26153.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com