Product Data Sheet

Alogliptin Benzoate

Cat. No.: HY-A0023 CAS No.: 850649-62-6 Molecular Formula: $C_{25}H_{27}N_{5}O_{4}$ Molecular Weight: 461.51

Target: Dipeptidyl Peptidase; Ferroptosis Pathway: Metabolic Enzyme/Protease; Apoptosis Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (54.17 mM; ultrasonic and warming and heat to 60°C) H₂O: 14.29 mg/mL (30.96 mM; ultrasonic and warming and heat to 60°C)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1668 mL	10.8340 mL	21.6680 mL
	5 mM	0.4334 mL	2.1668 mL	4.3336 mL
	10 mM	0.2167 mL	1.0834 mL	2.1668 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 1.25 mg/mL (2.71 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 1.25 mg/mL (2.71 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1.25 mg/mL (2.71 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Alogliptin Benzoate (SYR-322) is a potent, selective and orally active inhibitor of DPP-4 with an IC ₅₀ of <10 nM, and exhibits greater than 10,000-fold selectivity over DPP-8 and DPP-9. Alogliptin Benzoate can be used for the research of type 2 diabetes ^{[1][2][3]} .
IC ₅₀ & Target	IC50: <10 nM (DPP-4) ^[1]
In Vitro	Alogliptin (1 nM; 5-60 min) inhibits LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation in U937 cells ^[2] . Alogliptin (0.5-5 nM; 24 h) inhibits LPS-stimulated MMP-1 secretion and mRNA expression that is mediated by ERK pathway

	in U937 cells ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Alogliptin (0.01-1 mg/kg; p.o.) produced dose-dependent improvements in glucose tolerance and increased plasma insulin levels in female Wistar fatty rats ^[1] . Alogliptin (40 mg/kg/day for 2 weeks; p.o.) reduces infarction area and improves brain vascular integrity in middle cerebral artery occlusion (MCAO) mice ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Sci Signal. 2023 Jan 17;16(768):eabh1083.
- Biol Chem. 2023 Jan 12.
- Sci Rep. 2019 Dec 2;9(1):18094.
- Biochem Biophys Res Commun. 2019 Apr 2;511(2):387-393.
- Chromatography. 2015,36(1):19-24.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Feng J, et, al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007 May 17;50(10):2297-300.
- [2]. Ta NN, et, al. DPP-4 (CD26) inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP-1 expression by U937 histiocytes. Atherosclerosis. 2010 Dec:213(2):429-35.
- [3]. Hao FL, et, al. The neurovascular protective effect of alogliptin in murine MCAO model and brain endothelial cells. Biomed Pharmacother. 2019 Jan;109:181-187.
- [4]. Asakawa T, et, al. A novel dipeptidyl peptidase-4 inhibitor, alogliptin (SYR-322), is effective in diabetic rats with sulfonylurea-induced secondary failure. Life Sci. 2009 Jul 17;85(3-4):122-6.
- [5]. Moritoh Y, et al. The dipeptidyl peptidase-4 inhibitor alogliptin in combination with pioglitazone improves glycemic control, lipid profiles, and increases pancreatic insulin content in ob/ob mice. Eur J Pharmacol. 2009 Jan 14;602(2-3):448-54.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA