Thiamine monochloride

Cat. No.:	HY-A0100	
CAS No.:	59-43-8	
Molecular Formula:	C ₁₂ H ₁₇ CIN ₄ OS	
Molecular Weight:	300.81	N X N OH
Target:	Endogenous Metabolite; Bacterial	$\sim N^{\sim} N_{H_2}$ s
Pathway:	Metabolic Enzyme/Protease; Anti-infection	Cl
Storage:	4°C, sealed storage, away from moisture	
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)	

SOLVENT & SOLUBILITY

In Vitro		32.44 mM) 2 mM; Need ultrasonic) but saturation unknown.			
		Mass Solvent Concentration	1 mg	5 mg	10 mg
	Preparing Stock Solutions	1 mM	3.3244 mL	16.6218 mL	33.2436 mL
		5 mM	0.6649 mL	3.3244 mL	6.6487 mL
		10 mM	0.3324 mL	1.6622 mL	3.3244 mL
	Please refer to the sc	Please refer to the solubility information to select the appropriate solvent.			
In Vivo	1. Add each solvent Solubility: ≥ 100 n	one by one: PBS ng/mL (332.44 mM); Clear solution			

BIOLOGICAL ACTIVITY			
BIOLOGICAL ACTIVITY			
Description	Thiamine monochloride (Vitamin B1) is an essential vitamin that plays an important role in cellular production of energy from ingested food and enhances normal neuronal actives.		
IC ₅₀ & Target	Microbial Metabolite Human Endogenous Metabolite		
In Vitro	Thiamine levels in the blood of homozygous KO and KI mice feed a conventional diet are decreased to 0.058±0.051 and 0.126±0.092 µM, respectively, at 7 weeks compared to WT mice (0.796±0.259 µM). When WT and homozygous KO and KI mice are fed a thiamine-restricted diet (thiamine: 0.60 mg/100 g food), blood thiamine concentration at 5 and 14 days is markedly decreased to 0.010±0.009 and 0.010±0.006 µM, respectively, compared to WT mice (0.609±0.288 µM). Thiamine concentration in brain homogenate of WT mice fed a conventional diet is 3.81±2.18 nmol/g wet weight, and that of KO and K is 1.33±0.96 and 2.16±1.55 nmol/g wet weight, respectively. Notably, thiamine concentration in brain homogenate decreased steadily in KO and KI mice fed a thiamine-restricted diet (thiamine: 0.60 mg/100 g food) for 5 days (0.95±0.72		

	nmol/g wet weight) and 14 days (1.11±0.24 nmol/g wet weight), respectively, compared to WT (3.65±1.02 nmol/g wet weight), before the mice presented an phenotype of disease ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	WT, homozygous, and heterozygous KO and KI mice feed a conventional diet (thiamine: 1.71 mg/100 g) survive for over 6 months without any phenotype of disease. Homozygous KO and KI mice feed a thiamine-restricted diet (thiamine: 0.60 mg/100 g food) showe paralysis, weight loss, and immobility, and die within 12 and 30 days, respectively. Similarly, homozygous KO and KI mice feed a thiamine-restricted diet with an even lower percentage of thiamine (thiamine: 0.27 mg/100 g food) die within 14 and 18 days, respectively. However, WT and heterozygous KO and KI mice feed a thiamine-restricted diet (thiamine: 0.60 mg or 0.27 mg/100g food) survive for over 6 months without any phenotype of disease ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal Administration ^[2]	Slc19a3 E314Q KI mice are maintained routinely with conventional diet, which has a thiamine concentration (thiamine hydrochloride, MW=337.3) of 1.71 mg/100 g food. two types of thiamine-restricted food based on "purified diets for laboratory rodents" are prepared, in which thiamine concentration is 0.60 mg/100 g food (35% thiamine of conventional
	food) or 0.27 mg/100 g food (16% thiamine of conventional food). A high-thiamine-containing food is also prepared from AIN-93M, in which thiamine concentration is five times that of CE-2 (thiamine: 8.50 mg/100 g food). Thiamine concentration
	is determined at Japan Food Research Laboratories ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Kenneth Osiezagha, et al. Thiamine Deficiency and Delirium. Innov Clin Neurosci. 2013 Apr; 10(4): 26-32.

[2]. Kaoru Suzuki, et al. High-dose thiamine prevents brain lesions and prolongs survival of Slc19a3-deficient mice. PLoS One. 2017; 12(6): e0180279.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA