

Product Data Sheet

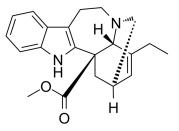
Catharanthine

Cat. No.: HY-N0252

CAS No.: 2468-21-5

Molecular Formula: $C_{21}H_{24}N_2O_2$ Molecular Weight: 336.43

Target: Calcium Channel


Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 2 years

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (297.24 mM)

H₂O: < 0.1 mg/mL (insoluble)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9724 mL	14.8619 mL	29.7239 mL
	5 mM	0.5945 mL	2.9724 mL	5.9448 mL
	10 mM	0.2972 mL	1.4862 mL	2.9724 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: \geq 3.5 mg/mL (10.40 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 3.5 mg/mL (10.40 mM); Clear solution

BIOLOGICAL ACTIVITY

Description

Catharanthine ((+)-3,4-Didehydrocoronaridine), a constituent of anticancer vinca alkaloids, inhibits voltage-operated L-type Ca²⁺ channel (VOCC). Catharanthine has IC₅₀s of 220 μM and 8 μM for VOCC currents in cardiomyocytes and vascular smooth muscle cells (VSMCs), respectively. Catharanthine lowers blood pressure (BP), heart rate (HR). Catharanthine has anti-cancer activity^{[1][2]}.

IC₅₀ & Target L-type calcium channel

In Vivo Catharanthine ((+)-3,4-Didehydrocoronaridine; 0.5-20 mg/kg; IV; single dose) evokes dose-dependent reductions in both BP

and $HR^{[1]}$.

Catharanthine (40 mg/kg; ip; single dose) with acute administration induces similar antidepressant-like activity in male and female mice at 1 h and 24 h $^{[1]}$.

Catharanthine (20 mg/kg; ip; for 14 consecutive days) increases swimming time and decreases immobility time at D7 or D14 in $mice^{[1]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	13-week-old male Sprague Dawley rats (300-350 g) $^{[1]}$		
Dosage:	0.5-20 mg/kg		
Administration:	IV; single dose		
Result:	Evoked rapid, transient reductions in BP and HR (lasting ,2 minutes) at low doses (0.5–5 mg/kg), whereas at higher doses (10 and 20 mg/kg), the BP and HR reductions were sustained.		

REFERENCES

[1]. Hugo R Arias, et al. (+)-Catharanthine and (-)-18-methoxycoronaridine induce antidepressant-like activity in mice by differently recruiting serotonergic and norepinephrinergic neurotransmission. Eur J Pharmacol. 2023 Jan 15:939:175454.

[2]. Jadhav A, et al. Catharanthine dilates small mesenteric arteries and decreases heart rate and cardiac contractility by inhibition of voltage-operated calcium channels on vascular smooth muscle cells and cardiomyocytes. J Pharmacol Exp Ther. 2013 Jun;345(3):383-92.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA