Product Data Sheet

Doxycycline hydrochloride

Cat. No.: HY-N0565A CAS No.: 10592-13-9 Molecular Formula: $\mathsf{C}_{22}\mathsf{H}_{25}\mathsf{CIN}_2\mathsf{O}_8$

Molecular Weight: 480.9

Target: MMP; Bacterial; Antibiotic; Parasite

Pathway: Metabolic Enzyme/Protease; Anti-infection

Storage: 4°C, sealed storage, away from moisture

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 100 mg/mL (207.94 mM; Need ultrasonic) DMSO: 100 mg/mL (207.94 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0794 mL	10.3972 mL	20.7943 mL
	5 mM	0.4159 mL	2.0794 mL	4.1589 mL
	10 mM	0.2079 mL	1.0397 mL	2.0794 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.20 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.5 mg/mL (5.20 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.20 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	Doxycycline hydrochloride, an antibiotic, is an orally active and broad-spectrum metalloproteinase (MMP) inhibitor ^[1] . Doxycycline hydrochloride shows antibacterial activity and anti-cancer cell proliferation activity ^{[1][2][3][4][5]} .
IC ₅₀ & Target	Tetracycline
In Vitro	Doxycycline hydrochloride (0.01-10 μ g/mL, 4 d) affects growth of glioma cells only under high concentrations ^[2] . Doxycycline hydrochloride (0.01-10 μ g/mL, 24 h) decreases MT-CO1 protein content with concentrations of 1 μ g/mL and higher in SVG cells ^[2] .

Doxycycline hydrochloride (100 ng/mL, 1 μ g/mL; 24 h) reduces proliferation of human cell lines^[4]. Doxycycline hydrochloride (0-250 μ M, 72 h) inhibits cell viability of breast cancer cells ^[5]. MCE has not independently confirmed the accuracy of these methods. They are for reference only. Cell Viability Assay^[2]

Cell Line:	LNT-229, G55, and U343 glioma cells			
Concentration:	0.01, 0.1, 1 or 10 μg/mL			
Incubation Time:	4 days			
Result:	Affected growth of glioma cells only under high concentrations (10 μg/mL).			
Cell Viability Assay ^[2]				
Cell Line:	SVG cells			
Concentration:	0.01, 0.1, 1 or 10 μg/mL			
Incubation Time:	24 hours			
Result:	Decreaseed MT-CO1 protein content with concentrations of 1 μg/mL and higher.			
Cell Proliferation Assay ^{[2}				
Cell Line:	MCF 12A, 293T cells			
Concentration:	100 ng/mL, 1 μg/mL			
Incubation Time:	96 hours			
Result:	Caused reduced proliferation of MCF 12A and 293T cells at 1 μg/mL.			
Cell Viability Assay ^[5]				
Cell Line:	MCF-7, MDA-MB-468 cells			
Concentration:	0-250 μΜ			
Incubation Time:	72 hours			
Result:	Inhibited breast cancer cells in a dose-dependent manner with IC $_{50}$ values for MCF-7 and MDA-MB-468 of 11.39 μ M and 7.13 μ M respectively.			

In Vivo

Doxycycline (oral gavage; 200 or 800 mg/kg; once daily; 3 months) reduces MMP-9 activity in untreated HT mice in a dose-dependent manner^[3].

Doxycycline and Tetracycline (HY-A0107), act systemically after absorption from the upper gastrointestinal tract. The main advantage of Doxycycline over Tetracycline is its longer activity, and it can be taken twice or once a day. The peak concentration of both drugs is similar, but in the case of Doxycycline the time to peak concentration is shorter, and half life is significantly longer^[6].

Doxycycline (Dox) is often used as an inducer in molecular biology studies to induce gene expression. In cells or model animals that have constructed tetracycline induced expression systems (Tet-On/Tet-Off systems), the expression of target genes can be precisely controlled by adding or removing $Dox^{[7][8][9][10]}$.

Dose reference for Dox induction [7][8][9][10]:

(1) Model animal: male Sprague–Dawley rats

Tet regulatory system ■20-3000 ppm of Dox is supplied in diet

(2) Model animal: Cags mice

Tet regulatory system №625 ppm of Dox is supplied in diet

(3) Model animal: Transgenic Wistar rats

Tet regulatory system ■2 mg/mL of Dox is supplied in drinking water

(4) Model animal: Transgenic NRMI inbred mice

Tet regulatory system⊠2 mg/mL of Dox is supplied in drinking water

Dissolution method of Dox^{[9][10]}:

(1) Prepare Dox working solution

Dissolve 100 mg Dox into 50 mL drinking water, add 5% sucrose or 2% saccharin to mask the bitter taste, and refresh the water every three days.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	6-month-old female Heterozygous Col3a1-deficient (HT) mice ^[3]
Dosage:	200 or 800 mg/kg
Administration:	Oral gavage; 200 or 800 mg/kg; once daily; 3 months
Result:	Reduced MMP-9 activity in a dose-dependent manner.

CUSTOMER VALIDATION

- Cell. 2023 Feb 2;186(3):591-606.e23.
- Mol Cancer. 2020 Mar 30;19(1):68.
- Mol Cancer. 2020 Sep 9;19(1):139.
- Nat Genet. 2024 Jan 24.
- Nat Microbiol. 2023 Mar;8(3):410-423.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. Anna-Luisa Luger, et al. Doxycycline Impairs Mitochondrial Function and Protects Human Glioma Cells from Hypoxia-Induced Cell Death: Implications of Using Tet-Inducible Systems. Int J Mol Sci. 2018 May 17;19(5):1504.
- [2]. Ethan Ahler, et al. Doxycycline alters metabolism and proliferation of human cell lines. PLoS One. 2013 May 31;8(5):e64561.
- [3]. Le Zhang, et al. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 2017 Apr 18;16(8):737-745.
- [4]. Niv Y. Doxycycline in Eradication Therapy of Helicobacter pylori--a Systematic Review and Meta-Analysis. Digestion. 2016;93(2):167-73.
- [5]. Manfredsson FP, et al. Tight Long-term dynamic doxycycline responsive nigrostriatal GDNF using a single rAAV vector. Mol Ther. 2009 Nov;17(11):1857-67.
- [6]. Redelsperger IM, et al. Stability of Doxycycline in Feed and Water and Minimal Effective Doses in Tetracycline-Inducible Systems. J Am Assoc Lab Anim Sci. 2016;55(4):467-74.
- [7]. Konopka W, et al. Tet system in the brain: transgenic rats and lentiviral vectors approach. Genesis. 2009 Apr;47(4):274-80.
- [8]. Kistner A, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10933-8.
- [9]. Wilfried Briest, et al. Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers-Danlos syndrome. J Pharmacol Exp

Ther. 2011 Jun;337(3):621-7. [10]. Eusebio Manchado, et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature. 2016 Jun 30;534(7609):647-51.						
	Cautiana Duada at haa		adiad andiasticas Fannasaust usa an	L.		
	Tel: 609-228-6898	Fax: 609-228-5909	edical applications. For research use on E-mail: tech@MedChemExpress.cc			
		1 Deer Park Dr, Suite Q, Monm				

Page 4 of 4 www.MedChemExpress.com