Inhibitors

Tetrahydroberberine

Cat. No.: HY-N0925 CAS No.: 522-97-4 Molecular Formula: $C_{20}H_{21}NO_4$ Molecular Weight: 339.39

Target: Dopamine Receptor

GPCR/G Protein; Neuronal Signaling Pathway:

Storage: Powder 3 years 2 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 25 mg/mL (73.66 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.9465 mL	14.7323 mL	29.4646 mL
	5 mM	0.5893 mL	2.9465 mL	5.8929 mL
	10 mM	0.2946 mL	1.4732 mL	2.9465 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach $^{[1][2][3]}$.
In Vitro	Tetrahydroberberine (100 μ M) blocks K(ATP) channels in sharply isolated dopaminergic (DA) neurons in rat substantia nigra pars compacta (SNc) and restores membrane hyperpolarization induced by 1 μ M rotenone (HY-B1756) ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Tetrahydroberberine (30 μg/kg; IV) causes a dramatic increase in gastric regulatory capacity in beagle dogs, significantly enhances gastric contractility and shortens contraction intervals in rats, and enhances gastric motility function in the upper gastrointestinal tract ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

- [1]. Lee TH, et al. Tetrahydroberberine, an isoquinoline alkaloid isolated from corydalis tuber, enhances gastrointestinal motor function. J Pharmacol Exp Ther. 2011 Sep;338(3):917-24.
- [2]. Niwa M, et al. Dopaminergic unique affinity of tetrahydroberberine and l-tetrahydroberberine-d-camphor sulfonate. Pharmacology. 1991;43(6):329-36.
- [3]. Wu C, et al. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology. 2010 Dec;59(7-8):567-72.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com