Product Data Sheet

Ursonic acid

Cat. No.: HY-N1486 CAS No.: 6246-46-4 Molecular Formula: $C_{30}H_{46}O_{3}$ Molecular Weight: 454.68

Target: Apoptosis; Endogenous Metabolite; NF-кВ Pathway: Apoptosis; Metabolic Enzyme/Protease; NF-кВ

Powder Storage:

3 years 2 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (109.97 mM; ultrasonic and warming and heat to 80°C)

H₂O: < 0.1 mg/mL (insoluble)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.1993 mL	10.9967 mL	21.9935 mL
	5 mM	0.4399 mL	2.1993 mL	4.3987 mL
	10 mM	0.2199 mL	1.0997 mL	2.1993 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (5.50 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (5.50 mM); Clear solution

BIOLOGICAL ACTIVITY

Ursolic acid is a naturally occurring triterpenoid that has orally active. Ursolic acid induces the apoptosis of human cancer Description $cells through multiple signaling pathways. \ Ursolic acid has anti-inflammatory and anticarcinogenic activity \ \ [1][2].$ In Vitro Ursolic acid (12.5-50 μM, 48 h) induce apoptosis in T24 human bladder cancer cells in a dose-dependent manner by

inhibiting AKT/NF- κ B signaling^[1].

Ursolic acid (50 µM, 2-4 h) increases the expression of p53 and caspase-3 and decreases bcl-2 gene expression in B16F-10 melanoma cells^[2].

Ursolic acid (10-50 μ M, 48 h) inhibits the production of TNF- α , IL-1 β , IL-6 and GM-CSF in B16F-10 melanoma cells^[2]. Ursolic acid (50 μM, 2 h) inhibits the NF-κB subunits (p65, p50 and c-Rel) and nuclear translocation of c-fos, ATF-2 and CREB-

1 in B16F-10 melanoma cells^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[1]

Cell Line:	T24 human bladder cancer cells	
Concentration:	12.5-50 μΜ	
Incubation Time:	48 h	
Result:	Inhibited cell proliferation in a dose-dependent manner.	

Western Blot Analysis^[1]

Cell Line:	T24 human bladder cancer cells	
Concentration:	12.5-50 μΜ	
Incubation Time:	48 h	
Result:	Inhibited the anti-apoptotic signaling (pAkt1, pI κ B α , NF- κ Bp65 and Bcl-2). Activated pro-apoptotic signaling (caspase-3).	

In Vivo

Ursolic acid (5-20 mg/kg, p.o., twice a day, 30 days) protects against ethanol-mediated experimental liver injury in adult male albino rats^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Adult male albino ${\sf rats}^{[3]}$	
Dosage:	5-20 mg/kg	
Administration:	p.o., twice a day, 30 days	
Result:	Increased weight gain and food intake. Decreased AST and ALT activities and total and indirect bilirubin levels. Increased direct bilirubin and levels of non-enzymic antioxidants (GSH, ascorbic acid and a-tocopherol). Decreased lipid peroxidation.	

REFERENCES

[1]. Saravanan R, et al. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 2006 Jan 11;78(7):713-8.

[2]. Gai, L., Cai, N., Wang, L., Xu, X. & Kong, X. Ursolic acid induces apoptosis via Akt/NF-kappaB signaling suppression in T24 human bladder cancer cells. Molecular medicine reports 7, 1673-1677, doi:10.3892/mmr.2013.1364 (2013).

[3]. Manu, K. A. & Kuttan, G. Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. International immunopharmacology 8, 974-981, doi:10.1016/j.intimp.2008.02.013 (2008).

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA