Tat-NR2B9c

Cat. No.:	HY-P0117				
CAS No.:	500992-11-0				
Molecular Formula:	C ₁₀₅ H ₁₈₈ N ₄₂ O ₃₀				
Molecular Weight:	2518.88 YGRKKRRQRRRKLSSIESDV				
Sequence Shortening:	YGRKKRRQRRRKLSSIESDV				
Target:	iGluR; NO Synthase				
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling; Immunology/Inflammation				
Storage:	Sealed storage, away from moisture				
	Powder -80°C 2 years				
	-20°C 1 year				
	* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)				

SOLVENT & SOLUBILITY

		Solvent Mass Concentration	1 mg	5 mg	10 mg		
	Preparing Stock Solutions	1 mM	0.3970 mL	1.9850 mL	3.9700 mL		
		5 mM	0.0794 mL	0.3970 mL	0.7940 mL		
		10 mM	0.0397 mL	0.1985 mL	0.3970 mL		
	Please refer to the so	Please refer to the solubility information to select the appropriate solvent.					

BIOLOGICAL ACTIVITY				
Description	Tat-NR2B9c (Tat-NR2Bct; NA-1) is a postsynaptic density-95 (PSD-95) inhibitor, with EC ₅₀ values of 6.7 nM and 670 nM for PSD-95d2 (PSD-95 PDZ domain 2) and PSD-95d1, respectively. Tat-NR2B9c disrupts the PSD-95/NMDAR interaction, inhibiting NR2A and NR2B binding to PSD-95 with IC ₅₀ values of 0.5 μM and 8 μM, respectively. Tat-NR2B9c also inhibits neuronal nitric oxide synthase (nNOS)/PSD-95 interaction, and possesses neuroprotective efficacy ^{[1][2][5]} .			
IC ₅₀ & Target	NMDA Receptor	nNOS		
In Vitro	Tat-NR2B9c is a PSD-95 inhibitor, with an EC ₅₀ of 6.7 nM for PSD-95d2, representing a >100-fold higher affinity for this domain than for PSD-95d1 (EC ₅₀ , 0.67 μM). Tat-NR2B9c inhibits NMDAR2A, NMDAR2B, and NMDAR2C binding to PSD-95, with IC ₅₀ s of 0.5 μM, -8 μM, and 0.75 μM, respectively. Tat-NR2B9c also blocks the interaction between PSD-95 and nNOS with an IC ₅₀ of -0.2 μM ^[1] . Tat-NR2B9c reduces association of PSD-95 with GluN2B by -50% in the YAC128 striatum, decreases NMDA-induced p38			

away nom moisture)

Page 1 of 3

	activation in YAC128 striatal tissue, but shows no effect on the NMDA-induced JNK activation ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	Tat-NR2B9c (10 nmol/g, i.v.) reduces infarction volume of male C57BL/6 mice, but has no effect at 3 nM/g ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
PROTOCOL)
Cell Assay ^[2]	Postnatal mono-cultured WT and YAC128 striatal neurons (DIV 9, due to the viability of these mono-cultured MSNs) are pretreated for 1 h with 200 nM Tat-NR2B9c, and/or SB-239063 (p38 inhibitor), and/or SP-600125 (JNK inhibitor), then incubated with or without 500 μM NMDA for 10 min. After NMDA treatment, striatal neurons are washed once with warm

	MCE has not independently confirmed the accuracy of these methods. They are for reference only.
Animal	Mice ^[3]
Administration ^[3]	In each study mice are randomly allocated to three treatment groups (0.0, 3.0, 10.0 nMole/g Tat-NR2B9c) or to sham
	treatment. The individual performing the experimental procedures, administering treatments and performing the analyses
	is blinded to the treatment assignments. Tat-NR2B9c is prepared at the indicated doses and administered intravenously via
	the tail vein using a pump in a volume of 1 μ L/g over 5 min beginning at reperfusion ^[3] .
	MCE has not independently confirmed the accuracy of these methods. They are for reference only.

are washed with PBS once and fixed with 4% paraformaldehyde (PFA) for 30 min^[2].

plating medium (PM) and then incubated in conditioned PM (without Tat peptides or p38, JNK inhibitors) for 24 h. Then cells

CUSTOMER VALIDATION

- J Cereb Blood Flow Metab. 2019 Aug;39(8):1588-1601.
- Neuropharmacology. 2024 Mar 21:109905.
- Sci Rep. 2018 May 18;8(1):7848.
- PLoS One. 2020 Mar 3;15(3):e0229499.
- J Neuropathol Exp Neurol. 2020 Jul 1;79(7):800-808.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Cui H, et al. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci. 2007 Sep 12;27(37):9901-15.

[2]. Fan J, et al. P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease. Neurobiol Dis. 2012 Mar;45(3):999-1009.

[3]. Teves LM, et al. Efficacy of the PSD95 inhibitor Tat-NR2B9c in mice requires dose translation between species. J Cereb Blood Flow Metab. 2016 Mar;36(3):555-61.

[4]. Jing Fan, et al. N-methyl-D-aspartate Receptor Subunit- And Neuronal-Type Dependence of Excitotoxic Signaling Through Post-Synaptic Density 9. J Neurochem. 2010 Nov;115(4):1045-56.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA