RedChemExpress

Product Data Sheet

Lixisenatide

HY-P0119
320367-13-3
$C_{215}H_{347}N_{61}O_{65}S$
4858.49 Hgegtftsdlskomeeeavrlfiewlknggpssgappskkkkkk-nh ₂
His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Le u-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser-Lys-Lys-Lys-L ys-Lys-NH2
HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK-NH2
GCGR; MEK; Akt; MMP; JNK
GPCR/G Protein; MAPK/ERK Pathway; PI3K/Akt/mTOR; Metabolic Enzyme/Protease
Sealed storage, away from moisture Powder -80°C 2 years -20°C 1 year * In solvent : -80°C 6 months: -20°C 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	0.2058 mL	1.0291 mL	2.0583 mL
	5 mM	0.0412 mL	0.2058 mL	0.4117 mL
	10 mM	0.0206 mL	0.1029 mL	0.2058 mL

BIOLOGICAL ACTIV	ТТУ			
Description	Lixisenatide is a GLP-1 receptor proinflammatory cytokines, a instability in Apoe ^{-/-} Irs ^{2+/-} m inflammation ^{[2][3][5]} .	or agonist. Lixisenatide inhibits tl nd blocks of cellular signaling pa ice by reprogramming macropha	he inflammatory response throug thways. Lixisenatide decreases a ages towards an M2 phenotype, v	gh down regulation of theroma plaque size and which leads to reduced
IC ₅₀ & Target	MEK1	MEK2	MMP13	MMP-1
	MMP-3			
In Vitro	Lixisenatide (100 μM, 24 h) inł Lixisenatide (100 μM, 24 h) rel	nibits the Aβ25-35-induced cytoto ieves the Aβ25-35-induced suppr	oxicity on cultured hippocampal or ession of the Akt-MEK1/2 signaling	cells. ^[1] . ng pathway on cultured

hippocampal cells ^[1].

Lixisenatide (10-20 μ M, 48 h) ameliorates IL-1 β -induced oxidative stress, mitochondrial dysfunction, and apoptosis in fibroblast-like synoviocytes (FLSs) ^[3].

Lixisenatide (10-20 μ M, 48 h) reduces IL-1 β -induced expression of MMPs and inhibits activation of proinflammatory pathways by IL-1 β in FLSs^[3].

Lixisenatide (10-20 μ M, 6 h) reduced oxygen-glucose deprivation/reperfusion (OGD/R)-induced generation of ROS in HUVECs [5].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line:	Hippocampal cells
Concentration:	100 μΜ
Incubation Time:	24 h
Result:	Reversed Aβ25-35-triggered cytotoxicity on hippocampal cell cultures.

Western Blot Analysis^[3]

Cell Line:	FLSs
Concentration:	10 μΜ, 20 μΜ
Incubation Time:	48 h
Result:	Significantly reduced expression of MMP-1, MMP-3, and MMP-13 at both the mRNA and protein levels in a dose-dependent manner.

In Vivo

Lixisenatide (10 µg/kg, Subcutaneous injection, once a day for a month) diminishes the atherosclerosis burden and produces more stable plaques ^[2].

Lixisenatide (10 μ g/kg, Subcutaneous injection, once a day for a month) decreases systemic inflammation inatherogenic-diet-fed Apoe^{-/-} Irs^{2+/-} mice^[2].

Lixisenatide (1 nmol/kg, Intraperitoneal injection, once a day for 14 days) afford renoprotective effects on experimental early diabetic nephropathy in a low dose^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Apoe ^{-/-} Irs ^{2+/-} mice ^[2]
Dosage:	10 µg/kg
Administration:	Subcutaneous injection (s.c.)
Result:	Exhibited smaller atheromas in the aortic arch region. Reduced the lesion size in cross-sections of hearts.
Animal Model:	Diabetic rats ^[4]
Dosage:	1 nmol/kg
Administration:	Intraperitoneal injection (i.p.)
Result:	Showed a significant amelioration on the elevated renal parameters. Showed significant mitigation in renal MDA and total NOx ⁻ (by 50.3 and 79.9%, respectively) and 43.9% elevation in renal total antioxidant capacity.

Averted the observed increments in iNOS and COX-2 expressions in the renal tissues of the
diabetic group.
Decreased the level of TGF-β protein expression.

CUSTOMER VALIDATION

• J Mol Neurosci. 2020 Feb 10.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. D Tews, et al. Enhanced protection against cytokine- and fatty acid-induced apoptosis in pancreatic beta cells by combined treatment with glucagon-like peptide-1 receptor agonists and insulin analogues. Horm Metab Res. 2008 Mar;40(3):172-80.

[2]. Ulrich Werner, et al. Pharmacological profile of lixisenatide: A new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010 Sep 24;164(2-3):58-64.

[3]. Mikkel Christensen, et al. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs. 2009 Aug;12(8):503-13.

[4]. Cai H Y, et al. Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats [J]. Behavioural brain research, 2017, 318: 28-35.

[5]. Vinué Á, et al. The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype [J]. Diabetologia, 2017, 60: 1801-1812.

[6]. Du X, et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes [J]. International immunopharmacology, 2019, 75: 105732.

[7]. Abdel-Latif R G, et al. Low-dose lixisenatide protects against early-onset nephropathy induced in diabetic rats [J]. Life Sciences, 2020, 263: 118592.

[8]. Xiao M, et al. The protective effects of GLP-1 receptor agonist lixisenatide on oxygen-glucose deprivation/reperfusion (OGD/R)-induced deregulation of endothelial tube formation [J]. RSC advances, 2020, 10(17): 10245-10253.

[9]. Ahrén B et al. Postprandial Glucagon Reductions Correlate to Reductions in Postprandial Glucose and Glycated Hemoglobin with Lixisenatide Treatment in Type 2 Diabetes Mellitus: A Post Hoc Analysis. Diabetes Ther. 2016 Jun 18

[10]. Lorenz M, et al. Effects of lixisenatide once daily on gastric emptying in type 2 diabetes--relationship to postprandial glycemia. Regul Pept. 2013 Aug 10;185:1-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA