

Screening Libraries

Proteins

Product Data Sheet

FITC-Labeled HGFR Protein, Human (HEK293, His)

Cat. No.: HY-P701263

Synonyms: MET; AUTS9; HGFR; RCCP2; c-Met

Species: Human HEK293 Source:

Accession: P08581 (E25-T932)

Gene ID: 4233

Molecular Weight: 30-40 kDa&90-100 kDa&150 kDa

	m			100	
PК	 12	г.	ĸ		ES
		_	_	-	

Appearance	Lyophilized powder.
Formulation	Lyophilized from 0.22 μm filtered solution of PBS, pH7.4. Normally trehalose is added as protectant before lyophilization.
Endotoxin Level	<1 EU/µg, determined by LAL method.
Reconsititution	It is not recommended to reconstitute to a concentration less than 100 $\mu g/mL$ in ddH ₂ O.
Storage & Stability	Stored at -20°C for 1 year, protect from light. After reconstitution, it is stable at 4°C for 1 week or -20°C for longer (with carrier protein). It is recommended to freeze aliquots at -20°C or -80°C for extended storage.
Shipping	Room temperature in continental US; may vary elsewhere.

DESCRIPTION

Background

The HGFR protein, a receptor tyrosine kinase, functions as a signal transducer from the extracellular matrix by binding to hepatocyte growth factor/HGF ligand. It plays a pivotal role in regulating diverse physiological processes, including proliferation, scattering, morphogenesis, and cell survival. Upon ligand binding at the cell surface, HGFR undergoes autophosphorylation on its intracellular domain, creating docking sites for downstream signaling molecules. Upon activation by ligand, it interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3, or the adapter GAB1, leading to the activation of multiple signaling cascades, including RAS-ERK, PI3 kinase-AKT, and PLCgamma-PKC. RAS-ERK activation is associated with morphogenetic effects, while PI3K/AKT coordinates prosurvival effects. In embryonic development, HGFR signaling contributes to gastrulation, the development and migration of neuronal precursors, angiogenesis, and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and the proliferation of secondary myoblasts. In adults, it participates in wound healing, organ regeneration, tissue remodeling, and promotes the differentiation and proliferation of hematopoietic cells. Additionally, in the context of microbial infection, HGFR acts as a receptor for Listeria monocytogenes internalin InlB, mediating the entry of the pathogen into cells.

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com