Product Data Sheet

BAPTA tetrapotassium

Cat. No.: HY-100168B CAS No.: 73630-08-7 Molecular Formula: $C_{22}H_{20}K_4N_2O_{10}$

Molecular Weight: 628.79

Target: Phospholipase

Pathway: Metabolic Enzyme/Protease

4°C, sealed storage, away from moisture and light Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture

and light)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 125 mg/mL (198.79 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.5904 mL	7.9518 mL	15.9036 mL
	5 mM	0.3181 mL	1.5904 mL	3.1807 mL
	10 mM	0.1590 mL	0.7952 mL	1.5904 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description BAPTA tetrapotassium is a selective chelator for calcium. BAPTA, as calcium indicator, has high selectivity against

> magnesium and calcium. BAPTA tetrapotassium is widely used as an intracellular buffer for investigating the effects of Ca²⁺ release from intracellular stores or influx via Ca²⁺-permeable channels in the plasma membrane. BAPTA tetrapotassium can

also inhibit phospholipase C activity independently of their role as Ca^{2+} chelators $^{[1][2][4]}$.

In Vitro BAPTA (0.3-30 μM; 1 h) can be used for the prevention of [Ca²⁺]-induced cell damage, but disturbe calcium signalling in

isingle differentiated NH15-CA2 neuroblastoma and glioma hybrid cells^[3].

 ${\sf BAPTA}\ (0\text{-}10\ \mathsf{mM})\ inhibits\ phospholipase\ C\ (PLC)\ activity\ in\ a\ dose-dependent\ manner,\ and\ is\ unrelated\ to\ Ca^{2+[2]}.$

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

CUSTOMER VALIDATION

Sci Immunol. 2019 Jun 28;4(36):eaau6426.

- Mil Med Res. 2023 Nov 25;10(1):56.
- Adv Sci (Weinh). 2021 May 27;e2100363.
- J Thromb Haemost. 2021 Aug 19.
- Sci Total Environ. 2020 Feb 10;703:134702.

See more customer validations on $\underline{www.MedChemExpress.com}$

REFERENCES

[1]. RYTsien, et al. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396-404.

[2]. Roger C Hardie, et al. Inhibition of phospholipase C activity in Drosophila photoreceptors by 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA) and dibromo BAPTA. Cell Calcium. 2005 Dec;38(6):547-56.

[3]. M B Collatz, et al. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses. Cell Calcium

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA