Product Data Sheet

T16Ainh-A01

Cat. No.: HY-100612
CAS No.: 552309-42-9
Molecular Formula: \(\text{C}_{19}\text{H}_{20}\text{N}_{4}\text{O}_{3}\text{S}_{2} \)
Molecular Weight: 416.52
Target: Chloride Channel
Pathway: Membrane Transporter/Ion Channel
Storage:
- **Powder:** -20°C for 3 years
- **In solvent:** -80°C for 6 months
- **-20°C:** 1 month

SOLVENT & SOLUBILITY

In Vitro
DMF : ≥ 10 mg/mL (24.01 mM)
DMSO : ≥ 5 mg/mL (12.00 mM)
* "≥" means soluble, but saturation unknown.

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent</th>
<th>Mass</th>
<th>1 mg</th>
<th>5 mg</th>
<th>10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 mM</td>
<td>2.4008 mL</td>
<td>12.0042 mL</td>
<td>24.0085 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mM</td>
<td>0.4802 mL</td>
<td>2.4008 mL</td>
<td>4.8017 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mM</td>
<td>0.2401 mL</td>
<td>1.2004 mL</td>
<td>2.4008 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 90% corn oil
Solubility: ≥ 2.08 mg/mL (4.99 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
T16Ainh-A01, an aminophenylthiazole, is a potent transmembrane protein 16A (TMEM16A) inhibitor, inhibiting TMEM16A-mediated chloride currents with an \(\text{IC}_{50} \) value of ~1 µM. TMEM16A (ANO1) functions as a calcium-activated chloride channel (CaCC)[1][2].

IC\text{50} & Target
TMEM16A[1].

In Vitro
T16Ainh-A01 (0.3-30 µM) significantly reduces both inward and outward components of \(\text{I}_{\text{ClCa}} \), and inhibits \(\text{I}_{\text{ClCa}} \) in RUICC without significantly affecting L-type Ca\text{2+} current[1].

T16Ainh-A01 (10 µM) inhibits nearly completely TMEM16A chloride current (induced by 275 nM free calcium in the pipette) at all voltages, indicating a voltage-independent block mechanism[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.
REFERENCES
