Fosfluconazole

Cat. No.: HY-100666
CAS No.: 194798-83-9
Molecular Formula: $\text{C}_{13}\text{H}_{13}\text{F}_2\text{N}_6\text{O}_4\text{P}$
Molecular Weight: 386.25
Target: Fungal
Pathway: Anti-infection
Storage:
- Powder: -20°C for 3 years, 4°C for 2 years, In solvent: -80°C for 6 months, -20°C for 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO: 6.2 mg/mL (16.05 mM; Need ultrasonic and warming)

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration</td>
<td>1 mg</td>
</tr>
<tr>
<td></td>
<td>1 mM</td>
<td>2.5890 mL</td>
</tr>
<tr>
<td></td>
<td>5 mM</td>
<td>0.5178 mL</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>0.2589 mL</td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 6.25 mg/mL (16.18 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 6.25 mg/mL (16.18 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 6.25 mg/mL (16.18 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Fosfluconazole is a prodrug of Fluconazole that is widely used as an antifungal agent.

IC_{50} & Target
Antifungal[^1]

In Vitro
To investigate the polarized bioconversion and the Transwell transport of phosphate prodrugs in Caco-2 monolayer, 10 μM Fosfluconazole or Fosphenytoin is dosed either in the apical or basal compartment in Transwell plates. Both prodrugs are efficiently cleaved in the apical compartment after a 2 h incubation. To further investigate the kinetics of ALP-mediated
bioconversion, the concentration-dependent ALP-mediated bioconversions are conducted to determine the Michaelis-Menten constant (K_m) of prodrug bioconversion in Caco-2 monolayers. The saturation curves of Fosphenytoin and Fosfluconazole with the concentration increase are found. The estimated K_m values of Fosphenytoin and Fosfluconazole are 1160 and 357 μM, respectively. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

The apparent half-life for Fosfluconazole bioconversion in intestinal mucosa scraps is 10 min. Fluconazole (FLCZ) is an antifungal agent that is efficacious in the treatment of fungal peritonitis. Fosfluconazole (F-FLCZ) is the phosphate prodrug of FLCZ, which is highly soluble compared with FLCZ. F-FLCZ is useful against fungal peritonitis in continuous ambulatory peritoneal dialysis (CAPD) patients because it has a high water solubility. The aims of the present study are to characterize the peritoneal permeability of FLCZ and the pharmacokinetics of FLCZ and F-FLCZ after intraperitoneal (i.p.) administration to peritoneal dialysis rats. FLCZ or F-FLCZ is administered intravenously and intraperitoneally. After the i.p. administration of F-FLCZ, FLCZ is detected in circulating blood and the dialyzing fluid in peritoneal dialysis rats. The concentration of plasma FLCZ after the i.p. F-FLCZ administration is lower than that after the intravenous (i.v.) F-FLCZ administration. It is considered that the dose should be increased appropriately when F-FLCZ is administered intraperitoneally. The profiles of plasma FLCZ after i.v. and i.p. administrations are analyzed using a two-compartment model in which the distribution volume of the peripheral compartment is fixed at a volume of the dialyzing fluid (peritoneal dialysis PK model). The peritoneal dialysis PK model could describe the profiles of plasma and dialyzing fluid FLCZ. These results suggest that FLCZ and F-FLCZ could be administered intraperitoneally for the treatment of fungal peritonitis in CAPD patients. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Kinase Assay

An aliquot of 200 μL of mucosa scrap lysate solution is mixed with 100 mM phosphate buffer, pH 7.4, to a final volume at 1 ml. The concentration of the test compounds (Fosphenytoin and Fosfluconazole) is 10 μM. The incubation medium is prewarmed at 37°C before the reaction is initiated by addition of the tested compounds. An aliquot of 100 μL is collected from the incubation vial at the time points 0, 5, 10, 20, 30, 45, and 60 min and transferred to a 96-well plate, in which 100 μL of Acetonitrile is prefilled to terminate the reaction. The samples are diluted 5-fold with acetonitrile containing 1 μM Tolbutamide as an analytical internal standard. The samples are centrifuged at 4000 rpm for 5 min to precipitate protein. The supernatant is transferred to a new 96-well plate for concentration analysis by liquid chromatography/tandem mass spectrometry (LC/MS/MS). MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA