DL-AP5

Cat. No.:	HY-100714	
CAS No.:	76326-31-3	
Molecular Formula:	C ₅ H ₁₂ NO ₅ P	QU Q
Molecular Weight:	197.13	HO
Target:	iGluR	P OH
Pathway:	Membrane Transporter/Ion Channel; Neuronal Signaling	O NH ₂
Storage:	Powder -20°C 3 years	
	In solvent -80°C 6 months	
	-20°C 1 month	

SOLVENT & SOLUBILITY

		Solvent Concentration	1 mg	5 mg	10 mg	
	Preparing Stock Solutions	1 mM	5.0728 mL	25.3640 mL	50.7279 mL	
		5 mM	1.0146 mL	5.0728 mL	10.1456 mL	
		10 mM	0.5073 mL	2.5364 mL	5.0728 mL	
	Please refer to the sol	Please refer to the solubility information to select the appropriate solvent.				

BIOLOGICAL ACTIVITY		
Description	DL-AP5 (2-APV) is a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 shows significantly antinociceptive activity. DL-AP5 specifically blocks on channels in the rabbit retina ^{[1][2][3]} .	
IC ₅₀ & Target	NMDA Receptor	
In Vitro	DL-AP5 (100 μM) partially prevents glutamate-induced increase in Arc/Arg3.1 protein levels ^[5] . DL-AP5 decreases the NMDA-induced Arc/Arg3.1 upregulation ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.	
In Vivo	DL-AP5 (0-10 μg/rat, Intra-CA1) significantly decreases the effect of NMDA ^[3] . DL-AP5 (0-10 nmol, Intracerebroventricular injection) causes a dose-dependent increase in food consumption ^[4] . DL-AP5 (5 nmol, Intracerebroventricular injection) attenuates the decreased food consumption induced by the intracerebroventricular injection of ghrelin ^[4] .	

www.MedChemExpress.com

Product Data Sheet

Animal Model:	Male Wistar rats (180-230 g) ^[3]		
Dosage:	1, 3.2 and 10 μg/rat		
Administration:	Injected into the intra-dorsal hippocampal (intra-CA1) immediately after shock administration, once		
Result:	Significantly decreased the effect of NMDA (10 $^{-2}\mu\text{g/rat},$ intra-CA1) with significant interaction.		
Animal Model:	Broilers cockerels (3-h fooddeprived (FD3), n=8 for each group) ^[4]		
Dosage:	0, 2.5, 5, and 10 nmol; in a volume of 10 μL		
Administration:	Intracerebroventricular injection		
Result:	Caused a dose-dependent increase in food consumption which was significant for 5 and 10 nmol doses.		
Animal Model:	Broilers cockerels (3-h fooddeprived (FD3), n=8 for each group) ^[4]		
Dosage:	5 nmol		
Administration:	Intracerebroventricular injection, followed by ghrelin (0.6 nmol)		
Result:	Attenuated the decreased food consumption induced by the intracerebroventricular injection of ghrelin.		

REFERENCES

[1]. Murray CW, et al. Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain. 1991;44(2):179-185.

[2]. Massey SC, et al. N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. J Neurophysiol. 1990;63(1):16-30.

[3]. Jafari-Sabet M. NMDA receptor blockers prevents the facilitatory effects of post-training intra-dorsal hippocampal NMDA and physostigmine on memory retention of passive avoidance learning in rats. Behav Brain Res. 2006 Apr 25;169(1):120-7.

[4]. Taati M, et al. The effects of DL-AP5 and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived broiler cockerels. J Physiol Biochem. 2011 Jun;67(2):217-23.

[5]. Chen T, et al. Glutamate-induced rapid induction of Arc/Arg3.1 requires NMDA receptor-mediated phosphorylation of ERK and CREB. Neurosci Lett. 2017 Nov 20;661:23-28.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

909 E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA