DL-AP5 sodium

Cat. No.: CAS No.: Molecular Formula: Molecular Weight: Target: Pathway: Storage:	HY-100714C 1303993-72-7 C ₅ H ₁₁ NNaO ₅ P 219.11 iGluR Membrane Transporter/Ion Channel; Neuronal Signaling Please store the product under the recommended conditions in the Certificate of Analysis.	HO, OH P U O NH ₂ ONa
---	---	---

Proteins

Product Data Sheet

Description	DL-AP5 (2-APV) sodium is a significantly antinociceptiv	a competitive NMDA (N-methyl-D-aspartate) receptor antagonist. DL-AP5 sodium shows ve activity. DL-AP5 sodium specifically blocks on channels in the rabbit retina ^{[1][2][3]} .	
IC ₅₀ & Target	NMDA Receptor		
In Vitro	DL-AP5 (100 μM) partially prevents glutamate-induced increase in Arc/Arg3.1 protein levels ^[5] . DL-AP5 decreases the NMDA-induced Arc/Arg3.1 upregulation ^[5] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
In Vivo	DL-AP5 (0-10 µg/rat, Intra-CA1) significantly decreases the effect of NMDA ^[3] . DL-AP5 (0-10 nmol, Intracerebroventricular injection) causes a dose-dependent increase in food consumption ^[4] . DL-AP5 (5 nmol, Intracerebroventricular injection) attenuates the decreased food consumption induced by the intracerebroventricular injection of ghrelin ^[4] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	Male Wistar rats (180-230 g) ^[3]	
	Dosage:	1, 3.2 and 10 μg/rat	
	Administration:	Injected into the intra-dorsal hippocampal (intra-CA1) immediately after shock administration, once	
	Result:	Significantly decreased the effect of NMDA (10 $^2\mu\text{g}/\text{rat},$ intra-CA1) with significant interaction.	
	Animal Model:	Broilers cockerels (3-h fooddeprived (FD3), n=8 for each group) ^[4]	
	Dosage:	0, 2.5, 5, and 10 nmol; in a volume of 10 μL	
	Administration:	Intracerebroventricular injection	
	Result:	Caused a dose-dependent increase in food consumption which was significant for 5 and 10 nmol doses.	

Animal Model:	Broilers cockerels (3-h fooddeprived (FD3), n=8 for each group) ^[4]
Dosage:	5 nmol
Administration:	Intracerebroventricular injection, followed by ghrelin (0.6 nmol)
Result:	Attenuated the decreased food consumption induced by the intracerebroventricular injection of ghrelin.

REFERENCES

[1]. Murray CW, et al. Neurokinin and NMDA antagonists (but not a kainic acid antagonist) are antinociceptive in the mouse formalin model. Pain. 1991;44(2):179-185.

[2]. Massey SC, et al. N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. J Neurophysiol. 1990;63(1):16-30.

[3]. Jafari-Sabet M. NMDA receptor blockers prevents the facilitatory effects of post-training intra-dorsal hippocampal NMDA and physostigmine on memory retention of passive avoidance learning in rats. Behav Brain Res. 2006 Apr 25;169(1):120-7.

[4]. Taati M, et al. The effects of DL-AP5 and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived broiler cockerels. J Physiol Biochem. 2011 Jun;67(2):217-23.

[5]. Chen T, et al. Glutamate-induced rapid induction of Arc/Arg3.1 requires NMDA receptor-mediated phosphorylation of ERK and CREB. Neurosci Lett. 2017 Nov 20;661:23-28.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898Fax: 609-228-5909E-mail: tech@MedChemExpress.comAddress: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA