Proteins

m-CPBG hydrochloride

Cat. No.: HY-100938 CAS No.: 2113-05-5 Molecular Formula: C8H11Cl2N5 Molecular Weight: 248.11

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

4°C, stored under nitrogen, away from moisture Storage:

* In solvent: -80°C, 6 months; -20°C, 1 month (stored under nitrogen, away from

moisture)

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

H₂O: 125 mg/mL (503.81 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	4.0305 mL	20.1524 mL	40.3047 mL
	5 mM	0.8061 mL	4.0305 mL	8.0609 mL
	10 mM	0.4030 mL	2.0152 mL	4.0305 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

m-CPBG (1-(3-Chlorophenyl)biguanide) hydrochloride is a selective 5-HT₃ agonist. m-CPBG hydrochloride can be used for the research of neurological disease^[1].

In Vivo

m-CPBG hydrochloride (third ventricle injection; 160 nM) significantly inhibits water intake in hypovolemic animals^[1]. m-CPBG hydrochloride (third ventricle injection; 320 nM) decreases water intake in water-deprived rats^[1]. m-CPBG hydrochloride (central administration⊠ inhibits water intake induced by pharmacological activation of central cholinergic and angiotensinergic pathways^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

m-CPBG hydrochloride (80 and 160 nM) significantly reduces water intake elicited by an acute salt load^[1].

Animal Model:	Wistar male $rats^{[1]}$
Dosage:	80, 160 and 320 nM
Administration:	Ventricle injection

Result:	Decreased water intake induced by water deprivation, acute salt load and hypovolemia

REFERENCES

[1]. Castro L, et al. Central 5-HT(3) receptors and water intake in rats. Physiol Behav. 2002;77(2-3):349-359.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com