

Product Data Sheet

L-701252

Cat. No.: HY-101101 CAS No.: 151057-13-5 Molecular Formula: C₁₃H₁₀ClNO₃ Molecular Weight: 263.68

iGluR Target:

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Powder -20°C 3 years

In solvent

4°C 2 years -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 10 mg/mL (37.92 mM; ultrasonic and warming and heat to 60°C)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	3.7925 mL	18.9624 mL	37.9248 mL
Stock Solutions	5 mM	0.7585 mL	3.7925 mL	7.5850 mL
	10 mM	0.3792 mL	1.8962 mL	3.7925 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 1 mg/mL (3.79 mM); Clear solution

BIOLOGICAL ACTIVITY

Description L-701252 is a potent antagonist of glycine site NMDA receptor with an IC $_{50}$ of 420 nM. L-701252 provides a small degree of

neuroprotection in global cerebral ischaemia $^{[1]}$.

IC₅₀ & Target NMDA receptor^[1]

In Vivo L-701252 (50 mg/kg; i.p.) provides a small non-significant protection^[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	3-Months Male Mongolian gerbils (60 g) ^[1]
Dosage:	50 mg/kg

Administration:	i.p.
Result:	Provided a small non-significant protection.

REFERENCES

[1]. Stone TW. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci. 2000;21(4):149-154.

[2]. Widdowson PS, et al. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors. Brain Res. 1996;738(2):236-242.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA