Panobinostat

Cat. No.: HY-10224
CAS No.: 404950-80-7
Molecular Formula: C₂₁H₂₃N₃O₂
Molecular Weight: 349.43
Target: HDAC; Autophagy; HIV; Apoptosis
Pathway: Cell Cycle/DNA Damage; Epigenetics; Autophagy; Anti-infection; Apoptosis
Storage: Powder
-20°C 3 years
4°C 2 years
In solvent
-80°C 6 months
-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro
DMSO : ≥ 57 mg/mL (163.12 mM)
* “≥” means soluble, but saturation unknown.

Preparing Stock Solutions

<table>
<thead>
<tr>
<th>Preparing Stock Solutions</th>
<th>Solvent Concentration</th>
<th>Mass 1 mg</th>
<th>Mass 5 mg</th>
<th>Mass 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mM</td>
<td>2.8618 mL</td>
<td>14.3090 mL</td>
<td>28.6180 mL</td>
<td></td>
</tr>
<tr>
<td>5 mM</td>
<td>0.5724 mL</td>
<td>2.8618 mL</td>
<td>5.7236 mL</td>
<td></td>
</tr>
<tr>
<td>10 mM</td>
<td>0.2862 mL</td>
<td>1.4309 mL</td>
<td>2.8618 mL</td>
<td></td>
</tr>
</tbody>
</table>

Please refer to the solubility information to select the appropriate solvent.

In Vivo
1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
 Solubility: ≥ 2.5 mg/mL (7.15 mM); Clear solution
2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
 Solubility: ≥ 2.5 mg/mL (7.15 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% corn oil
 Solubility: ≥ 2.5 mg/mL (7.15 mM); Clear solution

BIOLOGICAL ACTIVITY

Description
Panobinostat (LBH589; NVP-LBH589) is a potent and orally active non-selective HDAC inhibitor, and has antineoplastic activities. Panobinostat induces HIV-1 virus production even at low concentration range 8-31 nM, stimulates HIV-1 expression in latently infected cells, and induces cell apoptosis and autophagy.
Panobinostat can be used for the study of refractory or relapsed multiple myeloma.
IC₅₀ & Target

| In Vitro | Panobinosta (LBH589) induces apoptosis of both MOLT-4 and Reh cells in a time- and dose-dependent manner. Panobinost treatment results in histone (H3K9 and H4K8) hyperacetylation and regulation of cell-cycle control genes in Reh cells. Panobinost exhibits potent antiproliferative activity in human NSCLC cell lines with the IC₅₀ ranging from 5 to 100 nM. |

| In Vivo | Panobinosta (10, 20 mg/kg, i.p.) significantly slows tumor growth derived from Meso and NSCLC cells in vivo models. Panobinost markedly increases acetylation of histone H3 and H4 of H69 human SCLC cells harvest from SCID mice. Panobinost (5, 10 and 20 mg/kg i.p.) demonstrates a clear benefit of decreased tumor burden, significantly improves TTE and reduces bone density loss in a disseminated multiple myeloma mouse model. |

PROTOCOL

Cell Assay [1]
Cells are washed with ice-cold PBS containing 0.1 mM sodium orthovanadate, and total proteins are isolated using RIPA lysis buffer, which includes protease inhibitors (leupeptin, antipain, and aprotinin), 0.5 mM PMSF, and 0.2 mM sodium orthovanadate. Protein amounts are quantified using the Bio-Rad protein assay. Equal amounts of proteins are loaded onto an sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel, transferred onto nitrocellulose membrane, and probed with the antibody of interest: mouse monoclonal c-Myc and mouse monoclonal p21 antibodies; rabbit polyclonal phospho-Histone H2A.X, rabbit polyclonal acetyl-Histone H3 (Lys9), and rabbit polyclonal acetyl-Histone H4 (Lys8) antibodies; mouse monoclonal p27/KIP1 antibody; mouse monoclonal anti-β-actin; and mouse monoclonal anti-GADD45G. Membranes are then washed, reprobed with appropriate horseradish peroxidase-conjugated secondary antibodies, and developed with SuperSignal chemiluminescent substrate.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration [1]
AE17 and TC-1 cancer cells (1 x 10⁶ cells) are injected into the flanks of adult female C57Bl/6 mice and severe combined immunodeficiency (SCID) mice. M30 (10 x 10⁶ cells), A549 (5 x 10⁶ cells), H69 (2.5 x 10⁶ cells), BK-T (6.5 x 10⁶), H526 (10 x 10⁶), and RG1 (10 x 10⁶) cells are also injected, but in the presence of matrigel, into the flanks of SCID mice. When tumors reach 100 to 500 mm³, panobinostat is administered via i.p. injections (10-20 mg/kg) on a daily schedule (5-days-on, 2-days-off regimen) for the entire duration of the experiment. Control mice receive i.p. injections with dextrose 5% in water. Every tumor is measured with a caliper at least twice weekly. For evaluation of the effects of combination therapy on SCLC-derived tumors, SCID mice with H69 tumors are administered panobinostat. Three days after the initiation of panobinostat, and again 1 wk later, etoposide (40 mg/kg) is administered i.p.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Cancer Res. 2016 Dec 1;76(23):7001-7011.

See more customer validations on www.MedChemExpress.com
REFERENCES

