Inhibitors

Product Data Sheet

ARL67156 trisodium hydrate

Cat. No.: HY-103265B

Molecular Weight: 834.61

Target: Phosphatase

Pathway: Metabolic Enzyme/Protease

Storage: -20°C, sealed storage, away from moisture

* In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

SOLVENT & SOLUBILITY

In Vitro

H₂O: 16.9 mg/mL (20.25 mM; Need ultrasonic)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	1.1982 mL	5.9908 mL	11.9816 mL
	5 mM	0.2396 mL	1.1982 mL	2.3963 mL
	10 mM	0.1198 mL	0.5991 mL	1.1982 mL

Please refer to the solubility information to select the appropriate solvent.

DIO	100			TIVITY
DIU	LU	JICA	LACI	IVIII

Description	ARL67156 (FPL 67156) trisodium hydrate is a selective small is a selective samll molecular inhibitor, targeting to ecto-ATPase , CD39, and CD73. ARL67156 trisodium hydrate is also a competitive inhibitor of NTPDase1 (CD39), NTPDase3 and NPP1, with K _i s of 11, 18 and 12?μM, respectively. ARL67156 trisodium hydrate can be used in the research of disease like calcific aortic valve disease, asthma ^{[1][2]} .
IC ₅₀ & Target	Ki: 11 μM (NTPDase1), 18 μM (NTPDase3), 12 μM (NPP1) $^{[1]}$; 0.97 μM (CD39), 0.45 μM (CD73) $^{[8]}$
In Vitro	ARL67156 trisodium hydrate (1-100 μ M) potentiates neurogenic contractions in a concentration-dependent manner ^[4] . ARL67156 trisodium hydrate (10 μ g/mL, 24 h) increases the surface expression of CXCR3 on ATP-treated HMC-1 cells ^[5] . ARL67156 trisodium hydrate (30 μ M, 5s) potentiates the norepinephrine release promoted by ATP in guinea pig heart synaptosomes ^[6] . ARL67156 trisodium hydrate (100 μ M, 4h) significantly decreases HIV-1replication in macrophages ^[7] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.
In Vivo	ARL67156 trisodium hydrate (1.1 μ g/kg/day, administered with osmotic pumps implanted subcutaneously, for 28 days) prevents the development of calcific aortic valve disease in Warfarin (HY-B0687)-treated rats ^[2] . ARL67156 trisodium hydrate (intraperitoneal injection, 2 mg/kg) prevents the increase of serum adenosine concentration

	i-bisphosphate (FBP) ^[3] . ntly confirmed the accuracy of these methods. They are for reference only.	
Animal Model:	Warfarin-induced mineralization rat model ^[2]	
Dosage:	1.1 μg/kg/day	
Administration:	Administered with osmotic pumps implanted subcutaneously, for 28 days	
Result:	Prevented the development of aortic stenosis by lowering the level of apoptosis and mineralization of the aortic valve/aorta. Normalized the level of pAkt (an important kinase involved in the survival pathway).	
Animal Model:	C57BL/6 mice ^[3]	
Dosage:	2 mg/kg	
Administration:	Intraperitoneal injection, 1 h before administration of FBP (100 mg/kg)	
Result:	Completely abolished the anti-inflammatory effects of FBP (observed by the neutrophil infiltration, hyperalgesia and oedema of the joint).	

CUSTOMER VALIDATION

- Neuron. 2021 Dec 17;S0896-6273(21)00988-0.
- Front Immunol. 04 October 2022.

See more customer validations on www.MedChemExpress.com

REFERENCES

- [1]. C Kennedy, et al. ATP as a co-transmitter with noradrenaline in sympathetic nerves--function and fate. Ciba Found Symp. 1996;198:223-35; discussion 235-8.
- [2]. Ya-Dong Gao, et al. Th2 cytokine-primed airway smooth muscle cells induce mast cell chemotaxis via secretion of ATP. J Asthma. 2014 Dec;51(10):997-1003.
- [3]. Casilde Sesti, et al. EctoNucleotidase in cardiac sympathetic nerve endings modulates ATP-mediated feedback of norepinephrine release. J Pharmacol Exp Ther. 2002 Feb;300(2):605-11.
- [4]. Julieta Schachter, et al. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages. Immunobiology. 2015 May;220(5):589-96.
- [5]. Schäkel L, et al. Nucleotide Analog ARL67156 as a Lead Structure for the Development of CD39 and Dual CD39/CD73 Ectonucleotidase Inhibitors. Front Pharmacol. 2020 Sep 8;11:1294.
- $[6].\ L\'{e}vesque\ SA, et\ al.\ Specificity\ of\ the\ ecto-ATP as e\ inhibitor\ ARL\ 67156\ on\ human\ and\ mouse\ ectonucleotidases.\ Br\ J\ Pharmacol.\ 2007\ Sep;152(1):141-50.$
- [7]. Nancy Côté, et al. Inhibition of Ectonucleotidase With ARL67156 Prevents the Development of Calcific Aortic Valve Disease in Warfarin-Treated Rats. Eur J Pharmacol. 2012 Aug 15;689(1-3):139-46.
- [8]. Flávio P Veras, et al. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway. Sci Rep. 2015 Oct 19;5:15171.

Page 2 of 3 www.MedChemExpress.com

 $\label{lem:caution:Product} \textbf{Caution: Product has not been fully validated for medical applications. For research use only.}$

Tel: 609-228-6898 Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 3 of 3 www.MedChemExpress.com