Product Data Sheet

Robalzotan hydrochloride

Cat. No.: HY-10351A CAS No.: 184674-99-5 $C_{18}H_{24}ClFN_2O_2$ Molecular Formula:

Molecular Weight: 354.85

Target: 5-HT Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

$$O$$
 NH_2
 O
 F
 $H-CI$

BIOLOGICAL ACTIVITY

Description

Robalzotan hydrochloride (NAD-299 hydrochloride) is a potent and selective 5-Hydroxytryptamine 1A (5-HT1A) inhibitor. Robalzotan hydrochloride increases the firing rate of 5-HT cells. Robalzotan hydrochloride induces 5-HT1A receptor occupancy. Robalzotan hydrochloride has the potential for the research of a cholinergic deficit in the central -nervous

system^{[1][2][3]}.

IC₅₀ & Target 5-HT_{1A} Receptor

In Vivo

Robalzotan hydrochloride (1-100 μ g/kg; i.v.) significantly increases the activity of such neurons at 5 μ g/kg in rats, and reverses the acute inhibitory effect of citalopram (HY-121203) (300 μg/kg i.v.) or paroxetine (HY-122272) (100 μg/kg, i.v.) on the activity of 5-HT neurons in the dorsal raphe nucleus in rats[1].

Robalzotan hydrochloride (5, 50 μ g/kg; i.v.) increases the firing rate of the 5-HT cells^[1].

Robalzotan hydrochloride (2-100 µg/kg; i.v.) occupies 5-HT1A receptors in a dose-dependent in monkeys^[2].

Robalzotan hydrochloride (0.3; 1 and 3 µmol/kg s.c) causes a dose-dependent increase of extracellular ACh levels in the rat FC^[3].

Animal Model:	300-600 g, male Sprague-Dawley rats (5-HT cells) ^[1]
Dosage:	1, 5, 12.5, 25, 50, 100 μg/kg
Administration:	l.v.
Result:	Significantly increased the activity of such neurons at 5 μ g/kg, increasing doses of robalzotan 5-100 μ g/kg or 50-400 mg/kg did not further affect the firing rate of 5-HT neurons.
Animal Model:	3-4 kg, cynomolgus monkeys ^[2]
Dosage:	2, 10, 20, 100 μg/kg
Administration:	l.v.
	Occupied 5-HT1A receptors in a dose-dependent and saturable manner and he highest 5

HT1A receptor occupancy (70-80%) was attained after 100 μg/kg.

REFERENCES

- [1]. Arborelius L, et al. The 5-HT(1A) receptor antagonist robalzotan completely reverses citalopram-induced inhibition of serotonergic cell firing. Eur J Pharmacol. 1999 Oct 8;382(2):133-8.
- [2]. Farde L, et al. PET-Determination of robalzotan (NAD-299) induced 5-HT(1A) receptor occupancy in the monkey brain. Neuropsychopharmacology. 2000 Apr;22(4):422-9
- [3]. Hu, Xiao Jing, et al. Modulation of acetylcholine release by serotonergic 5-HT1A and 5-HT1B receptors: a microdialysis study in the awake rat. 2007.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com