

Product Data Sheet

AMG8788

Cat. No.: HY-104061 CAS No.: 1159996-43-6 Molecular Formula: $C_{23}H_{18}F_4N_2O$

Molecular Weight: 414.4

Target: TRP Channel

Pathway: Membrane Transporter/Ion Channel; Neuronal Signaling

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description	AMG8788 is a potent, selective, orally active antagonist of TRPM8 with an IC $_{50}$ of 63.2 nM $^{[1]}$.						
IC ₅₀ & Target	TRPM8 63.2 nM (IC ₅₀)	TRPA1 1 μM (IC ₅₀)					
In Vitro	AMG8788 potently inhibits the menthol and cold-induced increase in intracellular calcium in cells expressing rat TRPM8, the plasma half-life $(T_{1/2})$ in rats is 6.7 $h^{[1]}$. MCE has not independently confirmed the accuracy of these methods. They are for reference only.						
In Vivo	AMG8788 (30 mg/kg; p.o.; once) elicits a transient decrease in body temperature (T_b) in rats ^[1] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.						
	Animal Model:	Male Sprague Dawley rats weighing 200–350 g (6–12 weeks of age) $^{\left[1\right]}$					
	Dosage:	30 mg/kg					
	Administration:	Oral administration, once					
	Result:	Produced a significant decrease of T_b from 40 min to 70 min post dosing. Effect of AMG8788 on T_b in rats. P value is for comparing compound administered rat T_b with vehicle administered rat T_b . End of the study plasma concentration is reported in μ M. Asterisk indicates one-way ANOVA followed by Dunnett's MCT					
		Compound	Dose mg/kg (route)	Max T _b decrease (°C)	P value *	Time post dosing (min)	Plasma concentration
		AMG8788	30 (p.o.)	0.53	p < 0.05	40	1.5 ± 0.6

REFERENCES

1]. Gavva NR, et al. Transient re	ceptor potential melastatin 8 (TRP	M8) channels are involved in bo	ody temperature regulation. Mol Pain. 2	2012 May 9;8:36.
			l applications. For research use on	
		Fax: 609-228-5909 Park Dr, Suite Q, Monmouth	E-mail: tech@MedChemExpress.co Junction, NJ 08852, USA	om

Page 2 of 2 www.MedChemExpress.com